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Introduction: A modified Susceptible - Exposed - Infected - Quarantined - Recovered
(SEIQR) epidemic model with vaccination is considered to understand the transmission
dynamics of Ebola disease. Methods: The impact of vaccination as a control strategy is
investigated in two cases: vaccination is a constant function of time and time - dependent
vaccination. For the first case, the reproduction number R, is derived and mathematical
analysis reveals that the existence of equilibrium points and the qualitative properties of
solutions of the resulting autonomous model are completely determined by R,. For the
second case, we conduct an analysis that is based on optimal control theory to determine
optimal application of vaccination control. Results: It is shown that the disease - free
equilibrium is locally asymptotically stable if R, < 1 and unstable if R, > 1. When
R, > 1, the disease - free equilibrium loses its stability and an endemic equilibrium point
that is locally asymptotically stable emerges as also verified by demonstrating the
existence of forward bifurcation at R, = 1 using the method by Castillo - Chavez and
Song. Optimal control analysis shows that that vaccination effort is affected by the cost
associated with it. Vaccination control of Ebola can be carried out at maximum rate from
the onset of the outbreak if it is not costly. Conclusion: Vaccination is an important
intervention strategy in controlling Ebola outbreaks.

Citation:

INTRODUCTION

The Ebola Virus Disease (EVD), also known as Ebola

witnessed a very destructive outbreak of Ebola virus disease in
West Africa and even if a recent outbreak of the disease in
Democratic Republic of Congo had been successfully

haemorrhagic fever, has captured the attention of the general
public constantly causing fear due to its high infectivity as well
as fatality rate ranging between 50% to 90% [1-4]. It is caused
by Ebola virus which is a single - stranded RNA virus
belonging to the order Mononegalevirales, family Filoviridae
and genus Ebolavirus [5-6]. There are five different strains of
Ebolavirus: the Zaire Ebola virus, Tai Forest Ebola virus, Sudan
Ebola virus, Bundibugyo Ebola virus and Reston Ebola virus
[5-8]. The strains Zaire Ebola virus, Sudan Ebola virus and
Bundibugyo Ebola virus are responsible for several outbreaks
in different parts of the African continent with the Zaire Ebola
virus being the most virulent one [6, 8-9].

Because of its occasional occurrences in the African
region, the Ebola virus disease (EVD) is one of the diseases that
has also become a subject of recent modelling studies. A
number of mathematical models integrating various
intervention strategies have been formulated and analyzed in
order to understand the transmission dynamics and control of
the disease which has already claimed numerous lives since its
discovery in 1976. In the last seven years, the world has
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contained, the emergence of another dreadful outbreak remains
a major concern including in previously uninfected areas [10].
During the previous EVD outbreaks, there have been no
licensed vaccines available for use. It is only until the recent
outbreak in Democratic Republic of Congo that an
experimental vaccine became available and administered to, at
least, control the outbreak. When cases of Ebola disease
emerged during May and June 2018 in Democratic Republic of
Congo, a vaccination strategy involving the recombinant,
replication - competent, vesicular stomatitis virus - based
vaccine expressing the glycoprotein of a Zaire Ebolavirus
(rVSV - ZEBOV) was implemented and more than 3,000
individuals were vaccinated using this vaccine as a part of the
WHO response to EVD outbreaks [11-12]. Although not yet
licensed at that time, this vaccine is proven to be safe and
highly protective against Ebola virus based on the data from
clinical trials conducted in Africa, Europe and US in 2015. Last
December 19, 2019, the US Food and Drug Administration
have finally announced in its website the approval of Ervebo
(brand name of rVSV-ZEBOV), the first FDA - approved
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vaccine that prevents EVD for 18 years of age and older [13].
Ervebo remains to be the only vaccine available against the
disease to date. Another promising vaccine candidate that is on
its advanced stage of development is an adenovirus type 26 -
vectored vaccine encoding Ebola virus glycoprotein
(Ad26.ZEBOV) boosted by a modified vaccinia Ankara -
vectored vaccine encoding glycoproteins from Ebola, Sudan
and Marburg viruses as well as the nucleoprotein of Tai Forest
virus (MVA - BN - Filo) [14]. Initial report shows that the
combination of Ad26.ZEBOV and MVA - BN - Filo confers
immunity for at least 360 days and is well tolerated with good
safety profile [15].

With the recently approved vaccine for EVD, Ervebo, an
additional intervention strategy in the form of vaccination is
available in dealing with future outbreaks of the disease.
However, most of the countries in Africa that are being hit by
EVD are developing countries where there can be few resources
in battling such public health threat. Given the limitations on
resources, strategic administration of the vaccine to control the
disease is always the primary goal which we will be exploring
via mathematical modelling in this work.

The main objective of this study is to investigate the
dynamics of Ebola disease in the population with vaccination as
the main intervention strategy. The basic SIR model by
Kermack and McKendrick was used by Rachah and Torres in
[16] to understand the dynamics of Liberian population infected
by EVD in 2014. The model has been extended by adding a
vaccination term to study the effect of vaccination on the spread
of the disease. Our model extends this model by accounting for
the role of exposed individuals in disease transmission, adding
quarantined class and allowing demographic process to take
place during the outbreak. The present model also enriches the
recent model due to Li et al. in [17] by incorporating a
vaccination term and by using the standard incidence.

MATERIALS AND METHODS

Model Formulation

To formulate the model, we make the following
assumptions. First, we assume that there is vital dynamics as
outbreaks of the disease can last for more than two years where
the change in the population in that period of time is no longer
negligible. Secondly, we assume that there is no vertical
transmission of the disease, i.e., newborns are born susceptible.
We further assume that exposed individuals are capable of
transmitting the disease and dead bodies of individuals dying
from the disease are properly disposed of and they do not
contribute to the transmission of disease. Finally, we suppose
that there is homogeneous mixing, i.e., all susceptible
individuals have equal chances of becoming infected by
exposed asymptomatic and infectious individuals.
With the assumptions enumerated, we develop an SEIQR
model with vaccination to describe the spread of Ebola disease
within a population. The model consists of five classes that are
functions of time t: the susceptible class S(t), the exposed class
E(t), the infected class I(t), the quarantined class Q(t), and
the recovered class R(t). The equations that represent the
change in each class at any time t are constructed as follows.
The susceptible class is increased by a constant recruitment of
individuals at rate A. Susceptible class is reduced when there is
an adequate contact of a susceptible with an exposed or infected
individual. The susceptible individuals acquire the infection
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from exposed and infected individuals at ratesBI% and B, %
respectively. Therefore, transfers of susceptible individuals to
the exposed class occur at rates ﬁl% and B, % We adopt the

. . ES IS .
incidence terms Bl? and 'BZF because contact rates in rural

areas are constant. This is based on the observation in [18]
which states that contact rate is in proportion with population
density, which is constant in rural areas as they tend to expand
as population increases to maintain a constant population
density. The susceptible class is further reduced by vaccination
at per capita rate ¢ and by deaths due to natural causes at per
capita rate . Thus, the rate of change of the population for the
susceptible class is given by
CO—A-B T - Bom— (u+S.

As a result of contact (sufficient for transmission of infection)
between susceptibles and individuals in either the exposed or

infected class, the exposed population is increased by ﬁl%s

and g3, % It is decreased by death due to natural causes at per

capita rate u and by transfer of exposed individuals at per capita

rate € to infected class. These lead to the equation
CE=B By~ (utE.
The transfer of individuals from the exposed class to the
infected class occurs when exposed individuals start to show
symptoms and become more infectious. The infected class size
is increased by E and it is diminished by quarantine
(hospitalization) at rate v for appropriate treatment measures,
death due to the disease at rate a, before the infected are
brought to treatment sites, or death due to natural causes at rate
u. Therefore, the change in infected class is described by the
equation

d;—(:)=eE—(y+v+al)I.

In this study, we emphasize that the quarantine is equivalent to
hospitalization. The quarantined class is generated at rate v,
decreases due to recovery from disease at rate y, from death due
to the disease at rate a,, or death due to natural causes at rate u

so that
a(®) _

vi—(u+7vy+ay)Q.

Finally, the size of recovered class is increased by vaccination
at rate ¢ and by recovery at rate y and decreased by death due
to natural causes at rate u. The equation that describes the rate

of change of population for the recovered class is given by

dR(t)

o = $S+vyQ—pR.

These processes are outlined in the following schematic
diagram;

A L hE ., BB Y
— S E | I 1 Q
us ¥ UE ul oyl we | @Q
R
&S v—lf—r-»‘ yQ
uR

Fig. 1. Schematic diagram for the EVD model.
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Thus the model which describes the spread of the Ebola disease
within a community in the presence of vaccination is given by
the following system of nonlinear ordinary differential
equations:

as

W= AP By~ Wt S

dat

dE ES IS
L =g E B -t OF

E—eE—(,u+v+a1)I

daQ

d_—VI_(.U‘l'V‘l'az)Q

E =¢5+yQ —uR
1)
together with the following initial conditions S(0) > 0,

E() = 0, 1(0) = 0, Q(0) = 0, and R(0) > 0.
(2

fi=A-pB;

f2 =581
fz=ex
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Well - Posedness of the Model

In this section, we demonstrate the well - posedness of
model system (1). We proceed by showing the existence and
uniqueness of solutions, positivity and boundedness.

Existence and Uniqueness of Solutions

Theorem 1: Consider system (1) with nonnegative
initial conditions (2). Solutions to the initial value problem (1,
2) exist and are unique forall t = 0.
Proof. If we introduce the transformations S = x;, E = x,,
I =x3,Q=x, R=xsand let
x = (X1, X3, X3, %4, x5)7 then system (1) can be written in the
form

X1+ Xy +x3+ x4 + X5
»— U+ v+a)x;

x' = f(x),
where f=Uf ofafofs)" with
X1 Xy X1X3
- B, —(u+Hx
x1x2 x1x3
+ ﬁz - (:u + E)xZ

X1+ x, +x3 + x4 + X5

fa=vis—(+y+a)x,
fs = &xq +yxs — pxs

Because f;s are composed of sums of continuous functions,
fis are continuous functions on R> and the partial derivatives

af; of; 0 I5) a
O o6 Ofi 9fi and f’ exist and are continuous. Therefore, a

0x1  0xy’ 0x3  Ox4

unique solution eX|sts to the initial value problem (1, 2).

Positivity of Solutions
Since the model system (1) tracks the changes in human
population, it is important to show that the solutions of system

Theorem 2: Given that the initial conditions of system
(1) are such that S(0) = 0,E(0) = 0,I1(0) = 0,Q(0) = 0
and R(0) = 0. Then solutions S(t), E(t), I(t), Q(t) and R(t)
of model (1), with nonnegative initial conditions, will remain
nonnegative forall ¢ > 0.
Proof. Assume that S(0) = 0, E(0) = 0,1(0) = 0,Q(0) =
0 and R(0) = 0. From the first equation of system (1), we
have

- LT g - . . ds ES IS
(1) with nonnegative initial conditions will remain nonnegative —=A=pi——F—=—(u+S.
forallt > 0. @) dt NN
tE(m) t1(n)
With the integrating factor LB Iogciydn B2 o] \we can write (3) as
a { S(yelwrorh sy NoBdn+py Iy ,’V(g’,;)an]} Al OB RSan+ B2 g ysan| @)
t

Integrating both sides of (4) gives

tE(n) & 1(m)

T E(m)

S(t)e [wwesreess 5o fowgyen] f pel T8 G gy Iy Ilv((%d”]df+$(0)

where S(0) is the constant of integration. Hence,

tE(m)

S(t) = S(0ye | @O o wan+he

TE(n)
X

f © pel T I mDan+6: 13 1
0

tE(m) t 107

dn] +e [(ﬂ"’f)t"'ﬁl fo N(n)dn+ﬁ2 fo N(n)dn]

77]d‘r >0

Using similar argument on the four remaining variables, we obtain the following:
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dE
—>—(u+te)E=E(t) = E0)e ®+t >0

dt —
dl

—>—(u+v+a) = I(t) = 1(0)e”WHv+adt > g

dt —

e, —(u+y +a)Q = Q(t) 2 Q0)e~#*r*et > 0

dt —

dR
—— 2= —puR = R(t) = R(0)e ™t > 0.

dt —
Therefore, all solutions of (1) with nonnegative initial
conditions will remain nonnegative for all time t > 0.

Boundedness

Theorem 3: The closed set
A
Q= {(S,E,I,Q,R) ER}:0SN< ;}

is positively invariant and attracting with respect to model (1).
Proof. Let S(t), E(t), I(t), Q(t) and R(t) be any solution of
system (1) with nonnegative initial conditions. Adding all the
equations in (1) yields the inequality

dN

— =A-uN -l —a,Q <A-pN.

By using Gronwall’s inequality, we have

N <2+ (N(O) _ é) g-nt
" "
5)

where N (0) represents the initial population. It follows from (5)
that N(t) —» ﬁ as t — oo. In particular, N(t) Ss if N(0) < 2
Thus, under the flow induced by (1), the region € is positively
invariant. On the other hand, if N(0) > ;—\ then either the

. . o . A
solution enters Q in finite time or asymptotically approaches m

as t - oo. Hence, in the region Q, model (1) is said to be
mathematically and epidemiologically well - posed and the
dynamics of the model will be considered in Q.

Local Stability Analysis

In mathematical modelling’s point of view, the primary
goal of having vaccination as a main public health intervention
strategy during Ebola outbreaks can be interpreted as
establishing conditions so that model system (1) can be brought
to a situation wherein the disease - free equilibrium is stable
and there is no stable positive equilibrium point. These
considerations serve as a motivation to study the asymptotic
properties of the equilibrium solutions of model system (1).

Existence of Equilibrium Points

The equilibrium points of model system (1) are the points
where the derivative of S, E, I, Q, and R is zero, that is,
s _dE _dl _do _ dR

=—= — = 0 which can be found by solving the
dat dat dat dat dat

system
E 1
A=B= =B == (u+§S =0
Bi+ Bo— (+ €)F =0 .
€eE—(u+v+a)l=0 ©)
vi—-(u+y+a,)Q=0
§S+yQ—uR=0

26

for S, E, I, Q and R. Because of the involvement of the variable
N in the first and second equations of system (6), we include

the equation Z—IZ = 0 in the computation of equilibrium points.
Thus, we instead solve the system:

A=Bi 5 = Boiy = (u+ S =0

Byt Bey = (u+ E=0
€E—(u+v+a)l=0. @)

vi—-(u+y+a)Q=0

§S+yQ—-—uR=0
A—puN —a;] — a,Q =0

The third and fourth equations in (7), respectively, lead to
E = p.+v+a11 (8)

and
Q=i ©
From the sixth equation in (7), together with (9), we will have
N=§—i(a1+%)l. (10)

Using equations (8) - (10), then the first equation in (7) yields

. AN B ;/‘:[A_(“”%)’]
‘ﬁlE+ﬂzl+(u+f)N‘ﬂJ+[(ﬁlw+ﬂ2)_u+f@+ ay )]

u TTputyta, !
(11)

Using (9) and (11), then we can also have

A av
R = l f ;[A_(a1+u+y+a2)ll + yv 1
= u (”+§)A+[(ﬁ1%+ﬁz)—”—+f(a1+ azv )]I u+y+az

© u wy+as
12)

The second equation in (7), gives the equilibrium condition

S
(B.E + ﬁzl)ﬁ =Wu+eE
where, after substituting (8)-(11), we obtain

u+v+a u+v+a; u+é av
€ [(ﬁl € +ﬁ2)_T(a1+u+y+a2>]12
ptvta (u+e)u+v+a)u+A
a(n ) - = Ji=0
which has two solutions. One solution is I, = 0 where we
obtain the following from equations (8), (9) , (11) and (12),
respectively:
A A
EO - 0, QO - 0, SO —_ m, a.nd RO —_ [l.(/.l+§).

Hence, the solution I, = 0 corresponds to the disease - free
equilibrium which we denote as P,. The other solution is given

by:

(u+e)
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A(ﬁ u+V+al+ﬁ)_(#+6)(#+V+a1)(u+E)A
1 € 2

D e SO
(u+e)(u+v+a1)(u+§)A(R -1)
ot A (B ) - EE (o 4 )|

U+ OAR, - 1)

I =
ptv+a _p+é a,v
M[(ﬁl € +ﬁ2) U (a1+u+y+a2)]
which corresponds to the endemic equilibrium, denoted as P, Driessche and Watmough in [20]. We will take X, =
and this exists uniquely in the interior of Q provided (So,0,0,0, Ry) = (L 0,0, &N ) to be the equivalent
HB(+ v +ay) + €f,] e u(u+)

formulation for the disease - free equilibrium. Then we can

(ut+eut+v+a)@+s = rite model system (1) in the form
The quantity R, is the basic reproduction number of our i Y @

model which we will derive in the succeeding section. We state

0=

ax
the following theorem on existence of equilibrium points of the a F&) = v, (13) where
model.
By %S + B, %
Theorem 4: If R, < 1, then model system (1) has only 0
the disease - free equilibrium F(X) = 0
Py = (S,,0,0,0,R,) = ( ,0,00,-2 +é,,)) with N, =§ in Q. If |0 Jl
R,, then model system (1) has 0
two equilibrium points: the disease - free equilibrium P, and a and
unique endemic equilibrium
Py = (Sy,Ey, 11, @1, Ry), Where [ (L +eE ]
I —€E
A ap (w+v+ap)
s = ,u[A ( +u+y+a2)11] V(X)zl (u+ty+ay)Q—vI
1= A ES IS
R R R == 2 | B4 Bt (u+ OS—A
UR =S —yQ
g oktvta, Closely following [32], because there are m = 3
! € ! infected compartments, F and V are 3 x 3 matrices of the form:
B+ HAR, — 1) oF; avl
L= [ Lxp)|  and % (x|
H[(ﬁu+v+a1 ﬁ) u+f(a+ a,V )]
1 2 T "u+y+a, with1 < i,j < 3. Matrices F and V are found to be
ﬁl ﬁz 0 u+e 0 0
0, =—2 1, F=l 0" o° ol V=|-¢ w+v+a o |
ut+y+a, 0 0 0 0 —v u+y+a;
ol 3[/‘ (@ +%) ] v Hence, the next generation matrix is given by
; =—4¢ + L
u (u+§)A+[(b’M+V+a1+ﬁ') u+§(a+ a,v )]1 u+y+a,
Iz N € u T u+y+aJ)t
51;—0 Eﬁz;—o ﬁz;—o
with 0 0 2
A 1 a,v FV—l — | ute (u+e)(u+v+ay) p+v+ag .
N1=___(1 —)11 0 0 0
U u u+y+a, 0 0 0
The I_3asic Reproductiqn Number_ _ The basic reproduction number denoted by R, is defined
In this section, we derive the basic reproduction number to be the spectral radius of the next  generation matrix FV 1.
R, which is interpreted as the average number of secondary Therefore,
infections generated by a single infectious individual when
introduced to a wholly susceptible population [19-20]. Theorem 2 FV-1) ulBi(w+v+ay) +eBsl
; i S . =p — _
4 shows that a disease _free_ equilibrium always exists for 0 Urou+v+an@+)
model system (1) and is given by P, =(S,,0,0,0,R,) =
(L, ,0,0, é—A) The infected compartments of model Stability of Equilibrium Points
u+é n(p+8)

system (1) are E,I and Q and the noninfected compartments are As established in Theorem 4, undei the.condition ihat
Sand R. We let X = (E,1,Q,5,R)", i.e. infected compartments Ry <1, our model has only one biologically feasible

first, and follow the general procedure developed by van den equilibrium point which is given by the_ diseasg - free
equilibrium (DFE) that represents a community that is free of
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the disease. When R, > 1, then in addition to the DFE, there is
an endemic equilibrium (EE) which represents a community
where there is disease prevalence. In this section, we study the
stability of these equilibrium points. We present the following
result.

Theorem 5: The disease - free equilibrium point

A A .
Py = (5,,0,0,0,R,) = (E ,0, ,#(iﬂ,)) is locally

asymptotically stable if R, < 1 and unstable if R, > 1.

Proof. The local stability of DFE is governed by the
eigenvalues of the Jacobian matrix. To ensure local stability of
the DFE, the requirement is that the eigenvalues of the Jacobian
matrix of model system (1) evaluated at that point must have
negative real part. The Jacobian of (1) evaluated at the DFE P,
is

[ _g 3 g 1
| m+8 ﬁlNo ﬁzNO 0 0 |
So So

](PO):‘ 0 ﬁlN_O_(M+€) BZN_O 0 0

| 0 € —(u+v+ay) 0 0 |

0 0 v —(u+y+a) O

( ) l & 0 0 y —,uJ
14

with characteristic equation
=D+ - A-@+y+a) = A +a,d+a,) =0,

where
Biu
=2 _ :
a, ut+v+at+e 3
,uﬁ ,LL+V+6( +Eﬁ
a,=W+v+a)u+e)— LBl 0 fl) 2]-

The eigenvalues of (14) are precisely the roots of equation (15).
Clearly, there exist three roots A, = —u, 4, = —(u+v + a,)
and A; = —(u+ &) which are always negative. The local
stability of P, now depends on the two roots coming from the
equation A% + a;A + a, = 0. From the condition R, < 1, we
can derive the following inequalities:

Biu €fu
u+e>
p+é w+Hp+v+a)
(16)
and
kB (utv+as)+epBs]

w+v+a)(u+e >—u+€ :
17)
From the inequality in (16), we obtain

€U

a>u+v+a+
! et dutvta)
and from (17), we have a, > 0.

Since a; and a, are positive, the product a,a, is also

positive. According to Routh - Hurwitz criterion, these roots
have negative real parts. We note that if R, > 1 then a, < 0 so
that at least one of the roots is positive. Thus, the disease free
equilibrium P, is locally asymptotically stable if R, < 1 and
unstable if R, > 1.
Now, to show the local stability of the endemic equilibrium
point, we examine if all the eigenvalues of the Jacobian matrix
of model system (1) evaluated at P, = (Sy, E1, 1, Q;, R;) with
N, =S, +E, +1;+Q, + R, have negative real parts. The
Jacobian matrix of (1) at EE P, is given by
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I[_gl +g.—+d) _Bl;\%"'gz _Bzz_jl"'gz 92 92 }

| 91— 92 9s — 92 ﬁz%_gz —92 _gzl
](PI)ZI 0 € —-(u+v+a) 0 0 I'

l 0 0 v —(u+y+a) O J

0 0 14 —u
(18)
where
_ By Iy _ E151 1151

g1 =Pyt By , 92 =Pz b and

s
93 =By~ (e

The characteristic equation of (18) is obtained as

A5 4+ by A* + by A3 + b3 A% + byd + bs = 0,

(19)
where
by =2u+y+a,+k
by =¢g, + ko + Quty+adky +pulu+y+az)
by=Q0@u+y+a,+v+a;+e)ég, +evg, +ks+ Quty+a)k, +ulw+y+adk,
by=[w+y+a)w+vta)+@+y+a)u+e)+w+e)u+v+a)lig,

tuevg, + (u+evgs + Cuty + adks + ulu +y + axk,
bs=@+e)u+v+a)u+y+ay)+pul+evg, +ulu+y + ak;

with

ki=2u+é+v+a;+9,—9s

ky :(.U+V+051)(g1+!1+f_.93)—5(,82:]_11_.92)—(93_92)(91_
g2 tu+té) —(91_92)(_&%"'92)
ks=@+v+a)(g.—g)g1i—g+u+8)—(u+v+a)ig -
g2) (_ﬁlz_ll"‘gz)_e(_ﬁzli_ll"’gz) (91 _gz)_e(ﬁzz_ll_gz) (9:—
g2 tu+té)

Algebraic manipulations on k, and k5 and the use of the identity

S.
Boy- st vta) =0
1
lead to the following simplified forms:

ky=@+v+a)(@g+u+d+@+8$(g2—9g3) +€go + (u+€)(g1— g2)
ks=@+v+a)u+Og + wt+e)u+v+a))(gs — g2) +elu+8g,.

By the Routh - Hurwitz criterion, all roots of (19) will have negative
real parts if the following conditions are satisfied:b; > 0; b;b, — b; > 0;
bybyb; — b?b, — b2 + bibs > 0;  by(b3b, — bybg) — (byby — bs)? > 0;
and byb,bs(b,bs — byb,) — byb2bZ + b bybE — bybs (b3 — bybs) +
b,bsb2 — b2 > 0. Because

e(ut+e)p,

L LY
Bilu+v+a)tep,

S
.93:ﬁ1N_11—(H+6):

and
91— 92 =B N, B2 N N/ =

since S§; < N; and f}—l <1, it follows that k; >0, k, >0 and ks > 0.
1

Hence, b, is positive. As a matter of fact, all the coefficients of the
characteristic equation (19) are positive, i.e.,, b; >0 for i = 1,2,3,4,5.
Now, we determine an expression for byb, — b; > 0 :

5
biby = by = @+ + 960 + (ks = ks = evg = Ehi 2 ) + Gty + @)k}

+Qu+y + a)ky +uQu+y + ad(u+y + az)

Since the expression ki k, — k; —evg, — f[fl%gz is positive, it

follows that b, b, — bs is also positive. Thus we can state the following
theorem.

Theorem 6: The endemic equilibrium point P; is locally
asymptotically stable if the following conditions are satisfied: b,(bsb, —
bybs) — (byby — bs)? > 0;  by(bsb, — bybs) — (biby — bs)? > 0;  and
bybybs(b;bs — byby) — byb3bs + bybybZ — bybs (b3 — bybs) + bybsbd —
bz > 0.

2021 Vol. 8 No. 1


http://dx.doi.org/10.52547/vacres.8.1.23
https://vacres.pasteur.ac.ir/article-1-235-en.html

[ Downloaded from vacres.pasteur.ac.ir on 2026-02-15 |

[ DOI: 10.52547/vacres.8.1.23 ]

Tullao et al.

Bifurcation Analysis

As defined by Strogatz [21], bifurcation is the qualitative change in
the dynamics of the system as a parameter in the system is varied. In this
study, we carry out bifurcation analysis to further investigate the local
stability of EE. To do this, we study the bifurcation of model system (1) at
R, =1 using approach established by Castillo- Chavez and Song that is
stated as Theorem 4.1 in paper by Castillo-Chavez and Song [22]. This
approach is based on Center Manifold Theory and is used widely to
examine the existence of a forward or backward bifurcation. When the
bifurcation is forward, the disease - free equilibrium is locally
asymptotically stable for R < 1 which implies the gradual disappearance of
the disease in the community whereas when R, > 1 the endemic equilibrium
point is locally asymptotically stable which implies that the disease can
invade the population. In order to apply the theorem, we need to introduce
the following transformations: S =x;, E =x,, [ = x5, Q = x4, R = x;.

Letting x = (X, X5, X3, %4, x5)T then system (1) can be written as
dx

O
where f = (f1, f2, f3, far f5)T- Hence we have

dx, X1 X1X3

——=A-p - b —(u+&dx, =1
dt X1+ X3 + X3+ X4 + x5 X1+ Xy +x3+ X4 + X5

dx, X1X; X1X3

—< = + —u+e)x; =

dt Lxy +xp + x5 + x4 + X5 ﬁ2x1+xz+x3+x4+x5 W+ x =if,
dxs

TR (w+v+a)x; =fs

dx,

o vty ta)x =

dxs +

— =¢x Xy — UX5 =:

dt §x1 +yXy —pxs =i fs

(20)

We pick S, as our bifurcation parameter. Setting R, = 1 and solving
for B, = B; gives

S
No(ll+V+a1)(ll+5_B1N_(;)

B> = s :

0
Here, the DFE is the equilibrium of interest, i.e. x, = P,. The
Jacobian matrix of the transformed system (20) evaluated at the disease -
free equilibrium point P, and with 8, = B is

So . So
-(+8 —B1 N_o -p; N_o 0 0
So . So
](P()rﬂ;) — 0 ﬁlN_O_(H"'E) ngN_0 0 0
0 € —(u+v+ay) 0 0
0 0 v —(u+y+ay) o/
¢ 0 0 14 —u

The matrix J(P,, 85) has a simple zero eigenvalue, say, 45 = 0, and
all other eigenvalues are negative or have negative real parts. We let
v = (vy,V,,V3,7,,05)Tbe  the right eigenvector associated with the
eigenvalue A5 = 0 so it satisfies

J(Po, B3)v = Asv = ] (Py, B3)v = 0.

thus,
S S

-+ —Bi —Bi 0 0
1NU 2 Ny VU1 0
So . So v, 0
0 b1 N_O —(u+e B3 N_O 0 0 v |=|0
0 € —(u+v+a) 0 0 Vs 0
0 0 v —(uty+a) 0|\ 0

3 0 0 y —u

from which we get the system
SO ¥ SO
—(u+ v, - B1N_172 -pr=
0

N0v3=0

S, S
<ﬁ1N—Z—(u+6)>vz+ﬁ§N—Zv3=0
ev, — (u+v+a)v; =0.
(21)

vy —(u+y+a)dv, =0
§V1 + YV, —pvs =0
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Solving system (21), we get

17._( (u+e)(u+v+ay) p+v+ag v

ew+d e 7 pwytay’
(22)
Since P, is a nonnegative equilibrium of the model, S, and
R, (the first and the fifth components of P,) are both positive.
Hence, v, and vs do not need to be positive based on a remark
in [7].

We further let w = (wy, wy, wy, w,,we)T be the left
eigenvector associated with the eigenvalue A; = 0 so it satisfies
w/(Po, B3) = 0

which gives the system
—(u+ 8wy +8ws =0
So So
_ﬁ1N_0W1 + Blﬁo_ (pte)|w,+ew; =0
So So
—B;—w;+B—w, —(u+v+a)w; +vw, =0
NO NO
(23)

EVV(M+$)—f(#+f)(#+V+a1)(u+v+az))T
ne(u+E) (uty+az)

—(p+y+a)w,+yws =0
—uws =0

We solve system (23) with
u+v+a
—w,+tw; =1

to achieve the property wv = 1. We thus obtain

S
€ hte—py N_O
w:=|0, S ) 0
2ute-piyttvta
0

S ,0,0
2y+e—[>’1v(:)+v+a1

The sign of a is associated with the following non - zero
partial derivatives of f evaluated at (P, 85):

’fi _ _0*fi
0x,0x, - 0x,0x4

o’ _ _0%h
0x,0x3 0x30x,

So 0% _ _0*f
Ng' 8x,0x3  9x30x;

S
= Bk = -;

S S
=B+ Bisy

% _ 0% _ B So 0%f _ 0% _ B*ﬁ % _ 0% _ -8 i—ﬁ*i
dx,0x,  0x,0x, 1 N3' 0x,0x3  9x30x; 2 NE' 0x,0x3  9x30x; 1Nz 2 NE
2 2 2 2
Ph_gp S PN _opeSs Ph_ g S0 Ph__ppeSe
ax2 1 N2 ax2 2 N2 922 1 N2 ax2 2 N2

while the sign of b is associated with the following non - zero
partial derivatives of f evaluated at (P, 85):

a%f; _ 9%f _ _So %, _ 3’f _ So

0x308;  0P20x3 Ny’

0x308;  0P20x3 Ny

The bifurcation coefficients a and b are evaluated as follows:

5
0*fi .
a= Z kaivjm(l%.ﬁz)
ki j=1 L)
2 2 2

= Wali 0, i(%.ﬁ;) + W2U1U3i (Po, 3) + wav,vy I (Po, 3)
0x41 0%, 0x, 0x3 0x, 0x4
*f, . *f . *f .
TW,v,0, 2 (Po, B3) + wyvyv3 9%, 0x; oxs (Po, 83) + w31y —ax3 o, (Po, B3)
*fy . *f .
TW,v30, x5 0%, (Po, B3) + wyvsvs _6x32 (Po, B3)

S, S,
+w,v2 (—zm 1722) +wyv? <—2ﬁ; N—g)
and

5
0°fr . 0°f, .
b = Z kazm(ﬂ»ﬁz) = Wzvsm(ﬂ»ﬁz)-

k,i=1
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Using (22) and (24), it follows that

2B, So(u+ ) (u+v + ay)? _ 2B3So(u + €)1 + v + ay)?
e(Zu+e—ﬁl[‘f]—‘:)+v+0¢1)(//t+§)NU2 (2/1+6—,31;S\}—?]+V+a1)(}l+€)1\102
B 2By + BSo(u+ v + ay)? B 2B1So(u +v + ay)?
(Z,u+e—ﬁll‘f]—‘;+v+0¢1)(u+§)NU2 E(2u+e—ﬁll€]—‘;+v+a1)N§
2€B;S,
(2/1+E—ﬁl;?‘/—z+1/+011)(;¢+§)N02

a=-

and
€Sy

b_
(2u+e—ﬁ1 +1/+0:1)N0

Because (Zu +e— [31 + v+ 0!1) >0, we have that

a<0 and b > 0. Based on item (iv) of the theorem, we
conclude that when S, — 5 changes from negative to positive,
P, changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium becomes
positive and locally asymptotically stable and a forward
bifurcation appears [20].

Theorem 7: Model system (1) with constant vaccination
control exhibits a forward bifurcation at R, = 1.

Because the direction of the bifurcation of system (1) is
forward, existence of another equilibrium point (the EE)
bifurcating from the nonhyperbolic equilibrium point (the DFE)
is guaranteed when R, >1 and this point is locally
asymptotically stable. Moreover, Theorem 7 also shows that a
backward bifurcation scenario is impossible for model system
(1) which has an epidemiological implication that reducing the
basic reproduction number to below one is sufficient to wipe
out the disease.

Optimal Control Analysis: Formulation of the Problem

Optimal control theory has always been of great help to
many social planners to arrive at optimal strategies that will
minimize the number of infected individuals and the cost
associated with implementing the intervention measures [23].
Determining how to effectively administer vaccination during
EVD outbreak to minimize the number of cases and associated
cost is an interesting problem that is helpful in designing public
health policy when resolved. To gain introductory insights into
this complicated and broad problem, we reconsider the model
system (1) with vaccination rate that is time - dependent, that is,
we change the parameter ¢ to &(t) so that model system (1)
becomes

ds
= A= — By~ (e EW)S
dE ES IS
_ﬁ1 ﬁzﬁ_(#"'f)E
1
a=EE—(.u+V+a1)I.
dQ ;
T —(p+y+a)Q

dR
T (S +yQ —uR
(25)

The control &(t) is used to control the infection by
vaccinating susceptible individuals which means that we have
more recovered individuals who cannot catch the disease within
a certain period of time. Our goal of minimizing the number of
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infected individuals and the cost associated with the vaccination
control on [0,t] where t; is the time to be controlled, can be
viewed mathematically as finding a control &(t) and associated
state variables S*, E*, I*, Q* and R* that minimize the objective
functional given by

1(E®) = [/ [10) +£2@©]de.  (26)

In the objective functional (26), the quantity c¢ represents
the weight parameter for the vaccination control. The cost
associated with the vaccination program is described by the
term %fz(t). This choice for the representation of the cost in

implementing the vaccination control is due to nonlinear costs
that can arise potentially from high intervention levels [24- 25].
Such choice of representation for the cost regardless of control
strategies being implemented is used widely in the literature.
The cost for vaccination control can include the cost of the
vaccine, cost of syringes, shipment - related costs and other
incidental expenses [26]. The cost per vaccine according to the
estimate that was given in [26] is $ 135.90. If we set £*(t) as

the optimal vaccination control, then our problem is
summarized as

(1) = min{I(£(®) | () € 5}
subject to system (25) with initial  conditions
S(0)>0, E)=0, 1(0)=0, Q)=
0, RO =0 (27) with

E = {&(t) | £(t) is measurable and 0

< 1fort € [0,tf]}

where ¢, 1S a constraint that stands for the limitations on

vaccination effort, that is, there is a maximum rate at which

susceptible individuals may be vaccinated in a given period of
time.

< é(t) < émax

Characterization of the Optimal Control

To find the optimal solution, our next step will be to define
the Hamiltonian for the problem and then use the Pontryagin’s
Maximum Principle to obtain the characterization for the
optimal control. In view of these, we begin defining the
Hamiltonian
H=1(0)+5820) + A [A = By o — B — (u+ E@)S| + 26 [, 5+
BoS = (u+ OF| +A,[eE = (u+v+a)ll+Agvl — (u+y + a2)Q] +
ARE@)S +yQ — uR)

where Ag, Ag, 4;, 44, and A, are the adjoint variables
corresponding to states S, E,I,Q and R, respectively. We state
and prove the following theorem.

Theorem 8: Given an optimal control ¢* and
corresponding state solutions S*, E*, I*, Q* and R* of the state
system (25), there exist adjoint variables As, Ag, 4;, A, and Ag
that satisfy the system:

25 = =20 (BEEE) (1= ) + (s = 20087 (0) + s
d/lE

Ze = U5 = 2B (1 %) = Os = Ao ooy +
(/15 A€ + pdg

da, E*S* s* I*
=1 A=) + (ls—lg)ﬁzm(l _F) +
(L =2)v+ (u+a)A.  (28)

or o o
Q = Az — As) (%) + (’10 - AR)V + (U + ay)Ay

dA BLE*S*+BoI"S*

TR = (e — As) (BETEEE) +

W|th transversality conditions
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As(tr) = 2e(tr) = A,(t) = A9 (tr) = Ar(ty) = 0,

where N* = S*+ E* + 1" 4+ Q* + R*. Furthermore, the optimal
control &* is given by

& (t) = max <O,min (M fmax))

Proof. Differentiating the Hamiltonian H with respect to
the states and putting
§O =¢850 =5"®),EQ) =E"®),1(6) =1"(©), Q1)
=Q"(®,R(®) =R"(1)

with N* = S* + E* + " 4+ Q" + R” give the following

M 1 (BB (123 — e - a0 - wis
a

E* rs:
T) + (As — Ap)B W — (A = Ae— plg

H S*
—E = —(/15 _/115)!31F(1 - N

]

0H E*S* S* I
i 1+ (s - AE)BlW - (% _}LE)BZF<1 _F> (4 —2v—(u+a)y

0H E*S* + B,I'S*

% =—(g — %) (%) - (/IQ - AR)V = (u+az)l,
oH BLE'S® + B,I'S*

37 =~ =29 (A ) ~ ks

(30)

According to Pontryagin’s Maximum Principle, the adjoint
system is given by

dis  OH dA;  0H di, _ 0H

dt ~ aS’dt = 9E’dt  aI
dly  OH dd,  OH
dt ~ 0Q’ dt dR

To find the characterization of the optimal control &*(t)
we consider the following cases concerning the bounds of the
control:

i. Ontheset{t| 0 < &*(t) < &nax} We have
0H

6| =0=0=c8"(t) = 255" + A",
2
Solving for &*(t) yields
. (A — AR)S*
£ ="
ii.On the set {t |&*(t) = 0} ,we have
‘;—’; >0=0=c&(t) — AsS* + AxS* = 0.
2
and obtain
As — Ag)S™
u <&(t) =0.

iii. On the set {t |£*(t) = &max} We have
oH
—| <0 0=cE(E) = AS* + 4,5 <0
081
and obtain
(As —AR)S™ _ .
= R =< (t) = fmax

Combining the three cases above,
characterization of £*(t) to be

& (t) = max <O,min (M, fmax))

RESULTS

we found the

Numerical Simulations
In this section, we carry out numerical simulations for the
proposed SEIQR model with constant and time - dependent

2021 Vol. 8 No. 1
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vaccination rate using data on the 2014 Ebola outbreak in
Guinea. During the said outbreak, no licensed vaccine was used
to protect the susceptible individuals but the WHO had raised
awareness about the disease in order to reduce risk of
transmission and encouraged hospitalization for the infected
[27]. We perform numerical simulations by letting the vaccine
related parameter & be variable. Furthermore, as exposed
individuals are not easily avoided because they do not exhibit
symptoms of the disease, we choose a value for 8; such that
B, > B, in our simulations. Based on [17], the initial values for
the 2014 Outbreak in Guinea are: S(0) = 11,744,951, E(0) =
37,1(0) =49, Q(0) =20, and R(0) = 0. Table 1 displays
the values for parameters of the model which are taken from
recent works on Ebola modelling in Guinea that are based on
actual data.

Table 1. Numerical values for parameters of the model.

Parameter Description Value Source
A recruitment rate 1159 [17, 28-29]
u natural death rate | 2.6578x 1075 | [17,29]
B1 transmission rate of 0.18 -

exposed individuals
B> transmission rate of 0.14 [30]
infectious
individuals
4 vaccination rate - -
€ rate at which 1 [31, 32]
exposed individuals 9.7
become infected
v quarantine rate 0.5000 [31]
a, disease - related 0.2950 [31]
death rate of
infected
unquarantined
individuals
a; disease - related 0.0149 [31]
death rate of
quarantined
individuals
y recovery rate 0.0011 [31]

As shown in Fig. 2, our simulation results using the
parameter values in Table 1 and, in the meantime, assumed the
absence of vaccination, i.e. £ = 0, which was the case during
the 2014 outbreak in Guinea. In the absence of vaccination, our
value for the reproduction number can be as high as 1.9216.
One can see from the simulations the sharp decline in the
number of susceptible individuals in about 70 days. This is
because of the movement of the members of this susceptible
class to other classes due to the disease. Also, Fig. 2 also
depicts an increase in the number of exposed, infected and
quarantined individuals which reaches a peak at about 132
days, 134 days and 160 days, respectively, and before declining
to positive steady states. At the peak, 16.32% of the total
population will be exposed, 2.11 % will be infected and
29.97% will be quarantined. It is only after about 60 days that
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the number of recovered individuals begins to increase due to
le7

SEIQR Epidemic Model with Application to Ebola Disease

recovery from disease by drug or support treatment.
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Fig. 2. Simulation results using parameter values in Table 1 assuming the absence of vaccination

The effect of having a vaccination campaign for Ebola
disease is demonstrated in Fig. 3. In the simulation, we assume
that the vaccination rate ¢ is 0.2530. In the figure, we can see a
steady decline in the number of susceptible individuals before
stabilizing to a positive value. This is because of the movement
of the members of susceptible compartment to the recovered
compartment due to vaccination resulting in the observed
steady increase in the number of recovered individuals before it
also stabilizes to a positive value. The figure also shows a
steady decline in the number of infected individuals going to

le7

18
= Susceptible
16 - Recovered

-
FS

Population
o o o [ e 2.
- o @ o ~

[=]
~N

=
o

50 100 150 200 250
time (in days)

=]

300

zero while the number of exposed and quarantine individuals
both reach a peak at about 3 days and 18 days, respectively,
before finally settling down to zero.

In about 60 days, there will be no more infected
individuals which indicates Ebola disease elimination from the
population because of the presence of vaccination. This must be
the case because of the reduced value of the reproduction
number. Due to the vaccination rate ¢ = 0.2530, the value of
the reproduction number greatly decreased to approximately

0.0002 which is less than unity.
80
- Exposed
70 - |nfected
= Quarantined
€0
s S0
§ 40
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0 Y
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Fig. 3. Simulation results using parameter values in Table 1 and with vaccination rate ¢ = 0.2530.
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From the definition of the basic reproduction number of
the model, we can derive a quantity known as the critical
vaccination rate for susceptible individuals. To obtain the
critical vaccination rate, we set R, = 1 and solve for & which
gives

__ 1

fcrit = :U-RO <1 - :R:o)
where R, is the reproduction number in the absence of
vaccination. We note that the critical vaccination rate is positive
only when R, > 1. If R, < 1, then any initial vaccination rate
is capable of putting the situation under control. The condition
R, < 1 holds when & > &_.;;. Thus, a vaccination rate that is
maintained at & > &,;, may succeed in controlling the disease
in the long run. A vaccination response that falls below the
critical vaccination rate may not be helpful in dealing with the
disease and reduced vaccination effort may only lead to disease
persistence as & < & is equivalent to R, > 1 which is the
condition for the emergence of an endemic equilibrium that is
locally asymptotically stable.

We now turn our attention to the numerical study of the
time - dependent vaccination as a control strategy in the course
of Ebola epidemics. Systems (25) and (28) together with the
initial conditions (27) and transversality conditions (29),
respectively, form part of what is known as the optimality
system. The optimality system which is composed of ten
differential equations is solved numerically using the Forward -
Backward Sweep Method that was discussed in full detail in
[33]. In the simulation, we set the time period for the control at
t; = 120 days and the upper bound for the vaccination control
at &, = 0.90 while the weight on the cost of vaccination
program is arbitrarily chosen for illustration purposes.

Simulation results showing the impact of optimal
vaccination strategy on the exposed, infected and quarantined
groups are presented in Fig. 4. Rapid decrease on the number of
infected individuals is seen if optimal vaccination is employed.
Though initially there will be a slight increase in the number of
exposed and quarantined individuals, this only lasts for several
days and is followed by a continuous fall that leads to Ebola —
free stage.
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Fig. 4. Dynamics of the exposed, infected and quarantined individuals with optimal vaccination and without vaccination for ¢ = 10.

As depicted in Fig.5, the evolution of the control profile
over time. It shows that if ¢ = 10, then it is optimal to start
vaccination at the maximum rate but for the first two days only
after cases are detected and decrease it in time. If we can exert
this required effort on vaccination then we can have a
community that is free from the disease.

With the controlled model, we notice that vaccination,
depending on the cost associated with it, cannot always be
carried out at maximum rate. As an example, when ¢ = 100,
the optimal way is to administer vaccination at the beginning

http://vacres.pasteur.ac.ir
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starting with the 55% rate only and gradually decrease it in time
as shown in Fig. 5 right panel. Thus, as the cost of vaccination
control becomes expensive, it will not be optimal to start the
vaccination strategy at the maximum rate. This finding agrees
with the result that is given earlier in [34] using a simpler
model.
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Fig. 5. Graphical representation of vaccination strategies for ¢ = 10 (left panel) and for ¢ = 100 (right panel).
objective is to stop the spread of a disease through

DISCUSSION implementation of available control strategies, there will always

This study mainly explores the importance of vaccination
as an immediate response in mitigating the spread of EVD.
Because EVD possesses a considerable incubation period and
because we want to reflect in the model the effect of quarantine
(or hospitalization) measure which played a major role in
containing past outbreaks of the disease, our model is more
realistic for our objective than SIS - type models. For the model
with constant vaccination, we derive the basic reproduction
number R, using the next generation matrix. It is shown that
the existence of equilibrium points and the qualitative
properties of solutions of the model with constant vaccination
are completely determined by the basic reproduction number
R,. We prove using Routh - Hurwitz criterion the local stability
of the equilibrium points. We see that the disease- free
equilibrium of the system is locally asymptotically stable if
Ry, <1 and unstable if Ry, > 1. If R, >1 then a unique
endemic equilibrium point exists and it is locally asymptotically
stable which means that the infection will remain in the
community. The existence of a forward bifurcation at R, = 1 is
demonstrated using the approach by Castillo - Chavez and
Song. The result on the existence of a forward bifurcation
suggests that maintaining the reproduction number R, to below
unity by using vaccination measure is sufficient for disease
eradication and its existence precludes the occurrence of
backward bifurcation scenario wherein disease persistence is
still possible even if we are successful at reducing R, to below
unity. In the simulation stage, we use a set of parameter values
from various literature that considered Ebola disease to
illustrate possible scenarios to expect when there is a
vaccination campaign for the disease. Our simulations show
that if R, < 1, then the solutions tend to the disease - free
equilibrium whereas if R, > 1, then there will be disease
persistence which matched our theoretical results. From the
expression of the basic reproduction number of the model, we
compute the critical vaccination rate which can serve as a basis
for determining what vaccination rate is capable of controlling
the epidemic.

For the model where we allowed the vaccination to vary
with time, we conduct a study based on optimal control theory
acknowledging the fact that in situations where our ultimate
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be limitations on resources which are unavoidable. The optimal
control study helps us determine an optimal vaccination
strategy which has the potential to minimize the number of
infected individuals and thus the outbreak size. The
characterization of the optimal vaccination control is derived
with the aid of Pontryagin’s Maximum Principle. In our
simulations we use the same set of parameter values used in the
simulation of the model with constant rate of vaccination.
Simulations reveal that if we apply optimal vaccination, then
disease eradication is more pronounced and is achievable in a
short period of time as compared to the situations with no
vaccination at all, that is, we only rely on quarantine (or
hospitalization) as a control measure. The simulation results
enable us to address public health - related questions whether
we start vaccination control as soon as possible or delay it for
some time and if we should start vaccinating at maximum rate
or not.

For future considerations, the authors suggest that a
sensitivity analysis using the method due to Chitnis et al. in
[35] be performed to identify other control measures that may
be implemented along with vaccination to achieve better results
in controlling the disease. The authors also recommend looking
into the dynamics of the disease when vaccination and
quarantine controls are both time dependent.
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