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ABSTRACT

Introduction: Infectious diseases threaten the public health; hence understanding their propagation mechanisms may help to control
them. Mathematical models are tools that can help the scientists to understand the pathogens’ propagations and can provide strategies
for their control in future. Methods: Using mathematical theorems and MATLAB software, a continuous-time model known as
susceptible-infected-susceptible (SIS) for transmission of infection in a population was described and the effects of a vaccination
program based on this framework was investigated. Results: It was shown that the model had two equilibria: the infection-free
equilibrium and the infected equilibrium. A specific threshold in terms of model parameters was obtained and then the existence of
the equilibria and asymptotic stability of the system were stated with respect to this threshold. The theoretical results were also
verified numerically by providing several simulations. Conclusion: The results indicated the stability of this model which
emphasized that parameters such as restricting the immigration, reducing harmful contacts between the susceptible and the infected
individuals, increasing awareness level of people, and most-importantly vaccination will reduce the basic reproduction number and
help to control the disease. Moreover, a relation to calculate the minimum doses for vaccinating of the new-comers and the
susceptible individuals, was obtained.
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INTRODUCTION

The spread of various infections is a constant threat for the realistic models [10, 11]. Here, an epidemic model is
public health. Thus, understanding the mechanisms of investigated and its properties and stability are investigated.
propagation of pathogens and then finding ways to control them Moreover, the theoretical results have been discussed by
are a serious challenge for the public health authorities. providing several numerical examples and simulations.
Mathematical models are instruments that can help scientists to

understand how the infections spread, how to identify them, MATERIALS and METHODS

how to provide strategies for controlling the diseases and how

to forecast the possible outbreaks of diseases in the future. In The SIS model

mathematical epidemiology, each person, based on his/her
disease status, lies in only one sub-population or compartment.
All per capita changes in each compartment are obtained by
identifying the number of individuals who enter, exit, or
transmit in a unit of time. Therefore, the spread of infectious

The susceptible-infected-susceptible (SIS) epidemic models are
one of the well-known types of epidemic models. In these
models, susceptible individuals become infectious immediately
after a successful contact with infected individuals (transition
. . _ ' from compartment S to 1) while the infected individuals recover
diseases can be described by using mathematical models. Such from the infection and will return to compartment S after a
compartmental models which are often called “epidemic period of time (transition from compartment | to S). Thus, a SIS
models” have been introduced for various types of diseases [1- model is appropriate for those infections in which the infected
5]. The infectious disease modeling is often deterministic and is individuals do not get permanent immunity after recovery and
mainly formulated by differential equations for continuous-time become susceptible again after a period of time. The SIS
models [6, 7] or by difference equations for discrete-time models are widely addressed in the literature. For instance,
models [8, 9]. In recent years, stochastic modeling has been some authors have specially discussed a SIS model [12-14]

gaining more attention because it also considers randomness while some others have investigated the SIS-based models and
effects on a dynamical system and thus leads to providing more have also considered the effects of some issues such as

*Corresponding Author: Mahmood Parsamanesh, Department of treatment [15], quarantine [16] and vaccination [17] on the
Mathematics, Faculty of Science, University of Zabol, Zabol, Iran studied population. Selecting a suitable SIS model depends on
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32

Volume 5- Number 1- 2018


http://dx.doi.org/10.29252/vacres.5.1.32
https://vacres.pasteur.ac.ir/article-1-138-en.html

[ Downloaded from vacres.pasteur.ac.ir on 2026-02-15 |

[ DOI: 10.29252/vacres.5.1.32 ]

www.vacres.pasteur.ac.ir

with more details can better describe a population behavior.
However, additional details will make the model analysis more
difficult and complicated. These models may consider a
constant or a variable number for the population size. They may
also contain vital dynamics such as natural births and deaths,
immigration, disease-caused deaths and various incidence
functions.

The following version of the SIS model contains vital dynamics
as births or immigration, natural deaths, and disease-related
deaths:
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Fig. 1. Diagram of possible transitions of individuals in a SIS model.

As it is shown in Fig. 1, a population has been divided into two
sub-populations as susceptible and infectious individuals with S
and | individuals at time t in each one. The letters r and d are
the recruitment rate and the natural death rate, respectively
while § denotes the rate of death due to an infection. The
susceptible individuals become infectious at standard incidence
rate #S1 /N (where g is the transmission coefficient; contact
rate) and recover from the infection with the rate of a. All
parameters are assumed to be non-negative, in addition to
r+<0andd =0,

The equilibria of the model in the form (S, ") are obtained
by solving the following system:

ES _ —dS +ol =0,
S +1

_'BSI_—(d +o+05)I =0.
S +1

@)

As it can be_seen, two equilibria exist. The equilibrium
E°= CjL,oej is called the infection-free equilibrium and the

.
dR, +5(R, —1)

equilibrium g* = (1,R,—1) is called

the infected equilibrium. Here, R is the basic reproduction
number of model (1) and it can be found [18, 19] as
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It is seen that E~ exists, if R, > 1. Therefore, we can state the
following lemma:

Lemma 1: For system (1), the infected-free equilibrium E°
always exists while the infected equilibrium E* exists only
when R, > 1.

In the following theorem, we consider the local asymptotic
stability of the system.

Theorem 1: For system (1)

mnE % is stable if Ry < 1 and it is unstable if R, > 1,

() E” is stable if Ry > 1.

For the proof, please see Appendix A.

The SIS model and vaccination

To control and eliminate the infectious diseases, vaccination is
usually a preferred mean of action due to its efficiency,
compared with the other measures. The effect of a vaccine can
be studied in an infectious disease modeling by considering a
compartment for the vaccinated individuals in addition to the
other compartments (e.g. the susceptible, the infected, etc.) [20-
22]. Therefore, we consider the vaccinated individuals as a
separate sub-population in the model (1). The vaccination
program is applied on both the new members (with rate v) and
the susceptible individuals (with ratep). Although it is assumed
to be completely effective, the conferred immunity is lost by
passage of time (with rate 8). The under study SIS model with
vaccination (also known as SIVS model), is stated by a system
of differential equations as (4). Furthermore, Fig. 2 shows all
possible changes in the compartments of the model and Table 1
describes its variables and parameters.

s _ 4 __ps
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Fig. 2. Diagram of possible transitions in SIS model with vaccination.
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Table 1. Notations used in model (4) and their interpretations

Parsamanesh

Notation Name Category Description
t Time Independent variable Length of time passed from entering the infection to the population
S Susceptible individuals | Dependent variable Number of individuals at time T who can get the infection if they are exposed to it
| Infected Individuals Dependent variable Number of individuals at time t who are capable to spreading the infection
Vv Vaccinated Individuals | Dependent variable Number of individuals at time T who are immune from the infection by vaccination
r Recruitment rate Parameter, Constant Number of newborns or immigrant individuals who enter the population per unit of time
IB Contact rate Parameter, Constant Rate at which the susceptible individuals become infected
O Treatment rate Parameter, Constant Rate at which the infected individuals recover from the infection
d Natural death rate Parameter, Constant Rate at which the individuals die from the natural causes
o Disease death rate Parameter, Constant Rate at which the infected individuals die from the infection
1% Vat;cfirrwlztiv\?nmg;?lg:rr:ion Parameter, Constant Proportion of new members who are vaccinated
P su\s/caec[;:tiir;)a;g(i): dri?/tiijggls Parameter, Constant Rate at which the susceptible individuals are vaccinated
(7] Immunity lost rate Parameter, Constant Rate at which the vaccinated individuals lose their immunity

System (4) has two equilibria in form of (S, T V). The
infection-free equilibrium of the model is:

Evo—(r@@a-—v+o rdv+p)
dd+80+p)  'dd+6+p))
and the infected equilibrium is:
fyil | rdro+d)|,  S(Ro-1) r(Ro—1)
Ad dR +8(R -1) |'dR +8(R -1)’
(g, pd+6v+0)/(v(d +p+0))
d+6 dR +5(R -1) '
in which:

£d (@L—v)+0)

RoeT dro+0)d+pr0)’

is the basic reproduction number of model (4) and

R = pAd +0)
d+oc+5)d+p+0)

Similar to the previous section we can show:
Lemma 2: System (4) has only the infection-free equilibrium

EV ° when R, <1 and it also has a unique infected

equilibrium EV " if R , > 1.

In the following theorem, the local asymptotic stability of the
infected equilibrium is considered:
Theorem 2: For model (4),

(1) the infection-free equilibrium EV° is stable if R o <1 and
itis unstable if g , > 1,

(11) the infected equilibrium EV ~ is stable if |Vq o >1.
For the proof, please see Appendix B.

RESULTS and DISCUSSION

By implementing some codes in MATLAB software (version 7)
and using various values for the parameters, as well as for the
number of initial individuals in each sub-population, we
numerically challenged the theoretical results obtained in the
preceding sections. Supposing that the value of parameters in
model (1) are r = 60, § =0.08, d = 0.05, ¢ = 0.05, and
6 = 0.25; these values imply that R, = 0.2286 < 1 and
according to Theorem 1, the infection-free equilibrium E° is
stable. This result can also be concluded from Table 2, using
eigenvalues of the Jacobian matrix (7) of the model (1) at E’.
We see that eigenvalues 1, and A, are both negative and thus E°
is stable. From a biological point of view, this means the
disease will be extinct in this case. On the other hand, Fig. 3
displays the solutions of S (t) and I (t), and also a phase portrait
of the solutions when different initial values are used for the
number of individuals in each sub-population. It can be seen
that the solutions tend to the disease-free equilibrium E°=
(1200, 0).

Table 2. Stability of the model (1) for parameter values as r = 60, 8 = 0.08, d =0.05, 0 = 0.05, and § = 0.25.

Equilibrium| S | | A A, |Stability
= 1200 | 0 -0.05 -0.27 Stable
E" -33.07|255.12|0.11+ 0.45i|0.11- 0.45i | Unstable
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Fig. 3. Solutions of SIS epidemic model (1) for different initial numbers S (0) and | (0) with parameters of the model as r = 60, § = 0.08, d = 0.05, ¢ = 0.05, and
§ = 0.25. For these values, Ro = 0.2286 < 1 and disease will be vanished.

Now, we consider different values for B =0.8, ¢ =0.2, how solutions of the model (1) with different initial values,
and § = 0.1. For these values, R, = 2.2857 > 1 and thus the converge to E- = (247.06,317.65). In this case, disease will
infected equilibrium E” is stable as it was stated in Theorem 1. remain at a positive level in the population and it will be
Table 3 also verifies this behavior. Furthermore, Fig. 4 shows endemic.

Table 3. Stability of the model (1) for parameter values as r = 60, § = 0.8,d =0.05,0 = 0.2,and § = 0.1.

Equilibrium| S i | A4 | 4, |stability

= 1200 0 -0.05| 0.45 | Unstable
E” 247.06|317.65|-0.37(-0.13| Stable
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Fig. 4. Solutions of SIS epidemic model (1) for different initial numbers S (0) and | (0) with parameters of the model as r = 60, § = 0.8, d = 0.05, ¢ = 0.2, and
& = 0.1. For these values, Ry = 2.2857 > 1 and disease will remain in the population.

In such a situation (i.e. when R, > 1), we introduce a order to control and eliminate the disease. The vaccination
vaccination program to the population as stated in model (4), in program includes both new the members and the susceptible
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individuals and the vaccine doses must consider at such level
thatR , <1. Obviously, v _ (d (1fv)+.9j , and
Ro = Ro N . A
d+p+6
thus & | < R, - This relation states that the basic reproduction
in presence of the vaccine is less than another one in the
absence of the vaccine and therefore the disease is more
controllable. For this purpose, the vaccine doses v and p must
be chosen as such that the following inequality holds:

Rodv+p > (d +9)(R0 —l). (5)

Parsamanesh

If we take v = 0.25, p = 0.2 and 6 = 0.08 together with the
previous parameter values, we find thatﬁ 0, =0.8139<1.

Thus, according to Theorem 2, the infection-free equilibrium
EV ? is stable and disease extinction occurs (see Table 4 and
Fig. 5). On the other hand, when we only change v = 0.125

andp = 0.1, we have R =1.2298>1 and the infected

equilibrium EV * is stable. Therefore, the vaccine doses are not
enough to eradicate the infection and the disease will persist in
the population (see Table 5 and Fig. 6).

Table 4. Stability of the model (4) for parameter values as r =60, = 0.8,d =0.05,06 =0.2,8 = 0.1,v=0.25,p = 0.2 and 6 = 0.08.

Equilibrium| § i VvV A | A, | Ay [Stability
EV° 427.27 0 772.73 |-0.12(-0.38/-0.07| Stable
EV~  [0.8037e3[-0.3185e3|1.3519e3-0.34[-0.12] 0.10 | Unstable
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Fig. 5. Solutions of epidemic model (4) for different initial numbers S (0), | (0) and V (0) with parameters of the model as r = 60, § = 0.8, d = 0.05, 0 = 0.2,
§=0.1,v=0.25p = 0.2 and 8 = 0.08. These values yield to |§ , =0.8139<1.

Table 5. Stability of the model (4) for parameter values as r = 60, = 0.8,d =0.05,0 = 0.2, = 0.1, v=125,p = 0.1 and 6 = 0.08.

Equilibrium| § |V | A4 A A Stability
EV® [64565] 0 |554.35/-0.06] -0.24 0.08 | Unstable
EV"  [396.36]147.02]362.58|-0.28|-0.08+ 0.01i|-0.08- 0.01i| Stable
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Fig. 6. Solutions of epidemic model (4) for different initial values with parameters of the model as r = 60, 8 = 0.8, d = 0.05, ¢ = 0.2, 8 = 0.1, v=125, p = 0.1

and 6 = 0.08. For these values % =~ =1.2098 >1-

Theorems 1 and 2 are confirmed by Fig. 3- 6 and Tables 2- 5,
indicating that when the basic reproduction number is less than
unity, the infection dies out and otherwise the infection persists
in the population and for any initial values, the solutions of
models (1) and (4) stably converge to the equilibria.

Considering the basic reproduction number:

B @1A—v)+0)
d+oc+8)d+p+60)’

Ro =

We see r has not been appeared in this quantity and thus R , is

independent of the incoming members, whereas the number of
the infected individuals is directly affected by r. Therefore,
reducing fertility and immigration to the population will
decrease the number of the infected individuals and helps to
control the spread of the disease. All other parameters are
contained in R . and somehow affect the dynamics of the
model. The rates § and o are inversely related to g5 , and state
an increase in disease-caused deaths (elimination of the
infected) and recovery rate (disinfection) will lead to control of
the disease. The contact rate 8 directly affects i , and it is
clear that this parameter changes the basic reproduction
number, more quickly than others. When the contact rate
between the infected and the susceptible individuals is very
small, the disease can be eliminated. Moreover, informing the
people can lead to decrease in harmful contacts and thus
awareness level may also be contained in . It is easy to see that
R . Oecreases when vaccination rates v and p increase. Thus,
certain doses of the vaccine can give appropriate immunity to
the individuals and will make [ , less than unity. This shows
that vaccination is a useful strategy for the disease control.
Another important attribute of a vaccine is related to its
duration of immunity. When the rate of loss of vaccine-induced
immunity 6 is small, the duration of the immunity becomes
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significant. Hence, the efficiency of a vaccine to be used would
be important for the public health management. Furthermore,
regarding the relation (5), the small rate of loss of immunity 6
leads to smaller minimum vaccine doses v and p that are
required for the disease elimination.

In conclusion, a susceptible-infected-susceptible (SIS) model
was introduced. In this model, the total population size is not
constant and the demographic changes contain the recruitments
(births and immigration) as well as natural deaths and infection-
induced deaths. The infection takes place at a standard
incidence rate and the infected individuals who recover from
the infection can become susceptible to the reinfection, after a
period of time. The basic reproduction number (BRN) of this
model was obtained and it was shown that the model has two
equilibria: the infection-free equilibrium (IFE) and the infected
equilibrium (IE). It was proved that IFE always exists and it is
stable, if Ry < 1, while IE exists and is stable, if Ry > 1.

Next, in addition to the previous assumptions, a vaccination
program was introduced into the SIS model. The vaccination
was assumed to be perfect but temporary and included both the
new members and the susceptible individuals. BRN of this
model, namely, the SIVS model was also obtained and it was
shown that this model has also two equilibria. We proved a
stability statement similar to the statement we mentioned for the
SIS model; however, in terms of its corresponding BRN. It was
found that BRN of the SIVS model is less than the
corresponding quantity for the SIS model and thus the disease
is more controllable in the model with vaccination. Also,
following the trace of all model parameters in BRN, it was
revealed that restricting the immigration (or births), reducing
harmful contacts between the susceptible and the infected
individuals, increasing awareness level of people, and of course
vaccination will reduce the BRN and help to control the
disease. Furthermore, a relation was made that can be used to
calculate the minimum doses for vaccinating of the new-comers
and the susceptible individuals, in order to eradicate the
infection (i.e. relation (5)).
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The theoretical results were also verified numerically by
providing several simulations. The stability of each system for
various parameter values was studied by obtaining eigenvalues
of the corresponding Jacobian matrices. Also, the solutions of
each model with different initial numbers of individuals in the
sub-populations were presented. The figures clearly illustrated
that the solutions are stable and converge either to IFE when
BRN is less than unity (i.e. disease extinction) or to IE when
BRN is greater than unity (i.e. disease persistence).

For further studies, one can use real data about a disease that
fits in this model and compare the real outcomes with the
theoretical findings of this study. Moreover, more details can be
included in these models and then the properties of the obtained
models can be investigated mathematically. For instance, the
recruitment rate can be considered as a function of time or a
multiplication of the total population size. Moreover, the
standard incidence rate used in this model can be replaced by
other incidence rates such as bilinear incidences or saturated
incidences. The vertical transmission of infection may also be
included in the model. This means the model also contains
infected newborn members (i.e. a proportion of newborns with
an infection who enter a population). It is envisaged that
confirmed and robust models of this nature can shape the future
attempts to control and prevent infectious diseases by the public
health authorities.
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APPENDICES

Appendix A. Proof of Theorem 1:
The Jacobian of systemat (S, 1) is as follows:

E 52
; Py Pyt Q)
|2 S?2 '
Py Py @9+

At E © the Jacobian matrix is

J(E®) = —d —f+o (7
0 pg-d+5+0))

and its eigenvalues are A =-d and
AL =p—{d+5+0o)- Therefore, the eigenvalues have
negative real part if and only if R ; < 1. On the other hand, the
Jacobian matrix at E* is

1

1 2 2
—ﬂ(l—FTO) -d —ﬁ(Rfo) to (8)

J(ET)= 1 1
,[)’(1—R*0)2 ﬂ(Rfo)z—(d +6+0)

The characteristic equation of matrix J(E*) is

p(l) =A% +al+a,, (9)

where:
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a =-tr(J(E") :—/3+2ﬂ(Ri)—d —@d+5+0)
=(d+0+0)-p-d <0,
a, =det(J(E")=( +5)/3(1—Ri)2—d p(Ri)2+d(d 15+0)

0

- +5)ﬁ(1—Ri)2—d(d +5+a)(Ri)+d d +5+06)>0.

0 0
Thus the Routh-Harwitz criterion is satisfied and all
eigenvalues of J(E*) have negative real parts.
Appendix B. Proof of Theorem 2:
Part (1) can be easily proven as in Theorem 1. For proving Part
(1), denoting the force of infection as____ pis , We

S +1 +V

obtain the Jacobian matrix of system (4) at an equilibria as
follows:

X, -d+p) oY, 9-Y,
Y Y, -d+o+5) Y, (10)
1=J6,1V)= ps (OU ) ol

Inwhich, Yg, Y, and Y|, are partial derivatives of force of

infection Y'(t ) with respectto S , | and V _ respectively and
are:

£l (S +1 +V ) — BSI
S +1 +Vv )2

£S (S +1 +V ) — BSI
S +1 +Vv )2

v - £S|

v (S +1 +Vv )2’

X =

X, =

Y, +o

det (J (BV 1) :p‘r —d +o+5)

d +0) -
YS

s —d+p)

Parsamanesh

At EV © we have BS” =( +o+o5) and the
' S +17+v "
following relations can be obtained:

*

Y, =((L—dd +O-+5))S*+I*+V*'
Y, =@ +a+5)(1—s*+:ﬁ),
L e
Moreover:
-Y, +Y, I—ﬂ%,
S +1 +v
Y, - +o0+9) =—d +a+5)s*+:ﬁ,

*

Y, +Y,—-d+0+95) =-f—= :
+

S

* *

+V
We have:

tr(3(EV ) =-Y, —(d +p)+ Y, —(d +o+5)—(d +6)

=— - o ﬁ_d
(B-d+o+ ))S T av d-+p)
|
—(d O) — < ~—(d +86
@+o+ )S +1" +V @+9
|
=—p—  __(2d 0) <0.
ﬁS +1 +V (2d +p+0)

Taking determinant of J(EV ") with respect to the third row, we
get

X, +6

Y, +o
Y, —(d+oco+95)

= p(—Y, d+5)—0(Y, —(d + o +5)))
+d +)(—Ysd +5)+d + )Y, —(d + o +5)))

*

_ |
STtV

—{opd +o0+5)d +56+60)+(d +5)d +8)d + o+ )

— B +35)d +60)—(d + p)d +O)d +o +35)}

*

_ |
STl T4V

—{od + p+0)d +o+5)— L +6)d +5)}

<———F————dd +p+0)d +0+5) <0,

S +1 +V

Because, R , > 1 implies g(d +0) > (d + p+O)d + o +5)-
The second additive compound matrix of a 3x 3 matrix

&, & A3
A=la, a, a |,

83 85 Ay
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can be obtained as [23]

a,; +a,, ay3 —ay3
AP = a,  agta, ap
—85 ay Ay, +385;
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The second additive compound matrix of J(EV ) is then obtained as:
—Ys —(d + p)
+Y, —(d +o+ ) Y, Y, —6
JBEEV ) =
(0} —Ys —d+p)—d +09) —Y, +o
—p Y Y, —(d+oc+5)—d +6)
L
_ﬁs*+|*+v*_(d+p) X, , —@
= (0] —Y, —(d +p)—([d +6) —Y, +o
—Pr Ys Yv - (d + 9)
Now, subtracting the third row from the first row and adding the third to the second row, determinant of J 2 becomes:
1~ 1~
—f——————d Sy S d
ﬁS*+I*+V* 'BS*+I*+V*
det (3P (EV 7)) = —p —@d + p+6) —2d + 5 +6)
1~ 1~
-
=d{—p(p—{ +G+5))ﬁ—/0(2d +p+0)}
+1 +V
1~ 1~ 1~
redror Ot e N D@ e e s
-
—{( +O_+5)W+(d + )}
1~ 1~
{(ﬂWer)(Zd +P+9)_Pﬂm}< 0.
It was found thattr (EV ") <0, det(EV ")<O0 and matrix J (EV ) are negative [24] and J (EV *) is stable.
det (P (EV ") < 0. Thus, all real parts of eigenvalues of This means that the infected equilibrium EV ~ is stable.
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