Efficacy of Two Vaccine Platforms against SARS-CoV-2

Ali Ghazavi1,2,3, Mohsen Khaki4, Ghasem Mosayebi1,2,5, Nafiseh Keshavarzian1, Parnian Navabi1, Ali Ganji1,5*

1Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran. 2Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran. 3Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran. 4Department of Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran. 5Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.

ARTICLE INFO

Research Article

VacRes, 2022
Vol. 9, No.2, 18 - 23
Received: December 26, 2022
Accepted: January 17, 2023
Pasteur Institute of Iran

*Corresponding Author
Ali Ganji
Department of Immunology, School of Medicine, Arak University of Medical Sciences, P.O. Box: 38195-1884, Arak 3848176941, Iran.
Tel/Fax: +98 863 4173502/498 863 4173526
Email: a.ganji@arakmu.ac.ir

KEYWORDS: Vaccine efficacy, SARS-CoV-2, Immunization

ABSTRACT

Introduction: Several vaccine platforms have been designed to elicit an effective immune response against SARS-CoV-2. This study was aimed to evaluate the humoral immune response in Iranian people vaccinated with both inactivated virus vaccines and vector vaccine platforms. Methods: The study enrolled 360 vaccinated individuals with inactivated virus vaccines (BBIBP-CoV and Covaxin) and vector vaccine platforms (AstraZeneca and Sputnik V). Serum samples were collected for each volunteer on days 14 to 21 after vaccination, and anti–SARS-CoV-2 spike receptor-binding domain (RBD) IgG concentrations were analyzed by ELISA. Results: Higher antibody titers were observed in participants vaccinated with vector vaccines compared with those immunized with inactivated virus, especially in subjects who received two doses of AstraZeneca. (AstraZeneca: 204.19 U/mL [95% CI, 175.5-232.2] vs. Sputnik V:114.67 U/mL [95% CI 99.54-129.8]; P = 0.007). It was also observed that antibody titers were not significantly different between the two groups receiving inactivated vaccines (P = 0.86). Our results indicated that 28% of the population vaccinated with Covaxin and 32% of people vaccinated with BBIBP-CoV showed no response to the vaccine. There was also a statistically insignificant difference between age, BMI, and gender with antibody level in each group of vaccines (P > 0.05). Conclusion: Based on a limited population data, our study showed that the viral vector-based vaccines produced higher levels of neutralized antibodies than the inactivated vaccines, and their rate of non-response was lesser.

INTRODUCTION

The worldwide pandemic of Coronavirus disease 2019 (COVID-19) was originated in Wuhan, China. COVID-19 is a novel emerging infectious disease caused by a new type of coronavirus, namely, SARS-CoV-2. Effective vaccines are urgently needed due to the 2% mortality rate and profound medical, economic, and social implications of this pandemic [1]. The SARS-CoV-2 virus has four protein structures: Spike protein, Envelope protein, Membrane protein, and Nucleocapsid protein. The virus binds to specific ACE2 receptors on the cell surface via the S protein (Spike) and infects the cells. Therefore, neutralizing antibodies against the S protein can inhibit this process and prevent the virus invasion. Accordingly, most vaccines developed for SARS-CoV-2 are designed to produce antibodies against the SARS-CoV-2’s spike protein [2].

SARS-CoV-2 vaccines are one of the most important public health measures to prevent and reduce the morbidity and mortality of SARS-CoV-2 infection. Various vaccine candidates have been developed to generate protective immune responses against the spike antigen of SARS-CoV-2 [3]. There are several platforms of SARS-CoV-2 vaccines that include inactivated virus vaccines, vector vaccines, DNA vaccines, and mRNA vaccines. Each different type of the vaccines has its own advantages and disadvantages [4]. Authorized vaccines prevent COVID-19 by inducing the production of antibodies against a specific virus protein.

The Sputnik V vaccine contains adenovirus DNA, a recombinant adenovirus type 26 (rAd26) vector, and a recombinant adenovirus type 5 (rAd5) vector. Both vectors are used as containers to deliver SARS-CoV-2’s spike glycoprotein (i.e., rAd26-S and rAd5-S) to cells and synthesize new coronavirus’s envelope proteins. The full-length SARS-CoV-2 glycoprotein S is integrated into the vector and heterogeneous boosting with 2 different vectors for 2 vaccine shots is planned. In this manner, a more sustainable immunity is produced than vaccines which use the exact delivery mechanism for the both
MATERIALS AND METHODS

Ethics Statement and Study Population and Design

The Ethics Committee of Arak University of Medical Sciences (Arak, Iran) approved this study protocol by IR.ARAKMU.REC.1400.024 authorization. This study was conducted on 360 people vaccinated with 4 different types of vaccines (90 people for each vaccine). All volunteers were selected among the hospital and Arak Medical University staff and tested for anti-SARS-CoV-2 antibodies after the vaccinations. Before starting the study, informed consent from the patients who participated in the research were obtained. Participants in the study completed a questionnaire that included information on age, gender, weight, height, type of vaccine, date of administration of vaccine dose, and adverse effects. The inclusion and exclusion criteria of the study are listed in Table 1.

Laboratory Analyses

Serum samples were collected for each volunteer on days 14 to 21 after the vaccination, and virus-neutralizing antibodies were measured. Also, measurable hematological indicators were evaluated during the CBC test of these people. SARS-CoV-2 antibody levels were measured by ELISA detecting anti-S1-RBD IgG (DiaZist Cat No: DG. COVS.01). Normalized results were reported in A.U./ml. In this method, the assayed antibodies were captured by the recombinant SARS-CoV-2 stuck to the bottom of wells and anti-human IgG conjugated with HRP. According to the kit’s instruction, the assay was performed using a threshold of 11 A.U./ml to identify positive samples. The lower amount of 9 A.U./ml was considered as a negative sample. Results were expressed as optical density (OD450) measurements. According to the manufacturer’s instructions, the concentration of each sample was achieved by calculating the standard curve. The cutoff for seropositivity was set at 0.76, and all samples below these thresholds were considered negative.

Statistical Analysis

The volunteers were divided into 4 groups according to their vaccinations. The mean, standard deviation, and P values were analyzed for each group. One-way ANOVA (P < 0.05) followed by Tukey’s post-hoc statistical analysis was used for...
multiple comparisons. Statistical analyses were performed using the IBM SPSS Statistics software.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sputnik V</th>
<th>AstraZeneca</th>
<th>BBIBP-CorV</th>
<th>Covaxin</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>47</td>
<td>46</td>
<td>45</td>
<td>44</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>42.6981</td>
<td>37.8846</td>
<td>43.4516</td>
<td>39.3929</td>
<td>0.82</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>9.30795</td>
<td>10.97172</td>
<td>11.12606</td>
<td>8.41665</td>
<td>0.74</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>24.7519</td>
<td>24.4637</td>
<td>25.2620</td>
<td>25.4779</td>
<td>0.719</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>3.79938</td>
<td>4.88005</td>
<td>4.37997</td>
<td>4.28856</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Demographic characteristics in COVID-19 vaccine recipients.

In these 360 subjects, anti-S-RBD IgG levels for each type of the vaccine were not significantly different between women and men ($P > 0.05$; Fig. 1). Additionally, median anti-S1 titers were independent of BMI, and there was no significant difference between BMI and antibody levels in each group of the vaccines ($P > 0.05$; Table 2).

Fig. 1. Comparison of the antibody titer with gender. There was no significant difference between women and men with respect to their antibody levels in each vaccine group; Data points show mean ± S.D.; the error bars reflect S.D. NS: not significant.
The information on the adverse effects of vaccination was evaluated in each vaccinated group. About 77.2% of the subjects displayed one or more symptoms after the vaccination. After the second dose, the highest adverse effects were shown in subjects vaccinated with AstraZeneca (86%), and the lowest adverse effects were detected in subjects immunized with BBIBP-CorV (50%). Differential blood cell counts were not significantly different among subjects who received the COVID-19 vaccines ($P > 0.05$; Table 3).

Table 3. Comparison of hemato logic features in COVID-19 vaccine recipients.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sputnik V</th>
<th>AstraZeneca</th>
<th>BBIBP-CorV</th>
<th>Covaxin</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.0314</td>
<td>6.6609</td>
<td>6.7238</td>
<td>6.9091</td>
<td>0.8</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.72401</td>
<td>2.04911</td>
<td>1.34978</td>
<td>1.34267</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>252.0600</td>
<td>232.1739</td>
<td>226.7143</td>
<td>233.5909</td>
<td>0.215</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>58.00331</td>
<td>50.24725</td>
<td>48.39436</td>
<td>53.67402</td>
<td></td>
</tr>
<tr>
<td>Lymphocyte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>34.6314</td>
<td>36.1217</td>
<td>36.0762</td>
<td>34.1045</td>
<td>0.579</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>6.91160</td>
<td>5.52366</td>
<td>4.83641</td>
<td>6.46393</td>
<td></td>
</tr>
<tr>
<td>Neutrophil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.202</td>
</tr>
<tr>
<td>Mean</td>
<td>56.3432</td>
<td>53.3739</td>
<td>54.9952</td>
<td>57.7333</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>7.75492</td>
<td>7.77737</td>
<td>4.97629</td>
<td>6.90234</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Antibody Titers in the Studied Groups

As indicated in Fig. 2, members of two groups who were vaccinated with the vector vaccines had higher antibody titers than those immunized with the inactivated virus vaccines. Higher antibody titers were observed in subjects vaccinated with 2 doses of AstraZeneca (204.19 U/mL; 95% CI, 175.5-232.2), compared to Sputnik V recipients (114.67 U/mL; 95% CI, 99.54-129.8); $P = 0.007$. Antibody titers were not significantly different between the two groups who had received Covaxin and BBIBP-CorV inactivated vaccines ($P = 0.86$).

DISCUSSION

Vaccines are effective to control the spread of SARS-CoV-2 pandemic among the population [15]. To monitor the immunity induced by a vaccine, it is necessary to measure the level of antigen-specific antibodies to evaluate its effectiveness [16]. In this study, we measured the level of anti-S-RBD IgG, following vaccination with four different vaccine types against COVID-19 used in Iran, namely, Sputnik V, AstraZeneca, BBIBP-CorV, and Covaxin.

The main findings of the present study indicated that the level of anti-S-RBD IgG (anti-RBD) invecna was significantly high between vaccinated groups. In addition, among the vector-based vaccine group, individuals immunized with Sputnik V vaccine produced considerably lower levels of antibodies compared to people vaccinated with AstraZeneca. Considering that Sputnik V vaccine is based on Ad5 vector and previous studies have shown that the majority of the population (65 to 100% of Africans, 30 to 80% of Asians, 61% of Europeans, and 37 to 70% of Americans), have a high titer of pre-existing Ad5 antibodies due to their previous Ad5 infections, it can be assumed that high titers of anti-Ad5 antibodies can suppress the immunogenicity of Ad5 vector-based vaccines. This increase in anti-Ad5 antibody titers in populations, especially in Africa and Asia, has raised concerns about using
Ad5-based vaccines [17, 18]. Therefore, the lower antibody titer in the Sputnik group compared to than the AstraZeneca group in our study, is possibly due to the presence of anti-Ad5 antibodies.

On the other hand, the results of the previous studies indicate that since the Oxford/AstraZeneca vaccine production relies on chimpanzee adenovirus, the concern about the presence of primary antibodies against the vector and the previous immunogenicity problem with these adenoviruses (except in some African regions) could partially be dismissed. Therefore, we reckon that the high anti-SARS-CoV-2 antibody titer in the AstraZeneca-vaccinated group could be due to the lesser exposure of the majority of the study population and, thus, the lack of previous immunity, to chimpanzee adenovirus [2].

Our results showed that 28% of the population vaccinated with Covaxin and 32% of people vaccinated with BBIBP-CorV had shown no response to the vaccine. The approved production technology of inactivated vaccines for BBIBP-CorV and Covaxin is similar. In this method, the virus is cultured in Vero cells and then is chemically inactivated by betapropiolactone (BPL). Finally, after the purification, the proper adjuvant is added to the vaccine. Unlike the vector vaccines which maintain the native form of the spike protein, several studies performed on the molecular structure of the BPL-deactivated SARS-CoV-2 virus have shown that inactivated virus surface spikes form a post-fusion structure. In contrast, other data suggest that the spike protein of formalin-inactivated viruses show a pre-fusion structure [19-21]. Genetic modifications are done during the vaccine preparation to prevent the formation of post-fusion structure in the S protein; hence, the produced S protein would have a pre-fusion structure [22, 23]. Thus, participants in our study vaccinated with BBIBP-CorV and Covaxin vaccines may have high titers of binding but non-neutralizing antibodies, despite high levels of the neutralizing antibodies. These neutralizing antibodies can play an essential role in protection through practical Fc-mediated functions, including antibody-dependent phagocytosis, cytotoxicity, and activation of antibody-dependent natural killer cells [24].

Also, age, BMI and gender did not affect the immune response among all vaccinated groups. Our findings of the non-significant antibody titers in the vaccinated individuals, matched with age, were consistent with the phase 3 clinical trial of the Sputnik V vaccine. These data indicated that the antibody levels after the vaccination were unrelated to age [25]. This was consistent with another study in the U.K., where the evaluated antibody titers in vaccinated people with two dosages of the AstraZeneca vaccine were found to be similar in immunogenicity in all age groups [26]. However, in a study by Müller and colleagues, a lower titer of neutralizing antibodies was reported in the elderly group after vaccination with Biontech/Pfizer BNT162b2. This data indicates that this population needs precise monitoring and may require prior immunization and/or increased vaccine doses to ensure long-term safety and protection against the infection [27].

According to the questionnaires completed by the participants, among the four different types of used vaccines, the most side-effects were reported for the AstraZeneca group; however, these side-effects were moderate, and the lowest rate of side-effects was observed for the BBIBP-CorV group. Our finding was consistent with studies in the United Arab Emirates and India. A study in the United Arab Emirates showed that the side effects of the BBIBP-CorV vaccine were mild, and the majority of participants in the study had low and predictable side-effects while none experienced severe manifestations and required hospitalization. Although there is no satisfactory definition related to COVID-19 immunity, high titers of neutralizing antibodies and a strong CD8+ and CD4+ T-cells response play an essential role in developing protective immunity to the infection [8].

Although, the acquired immunity against SARS-CoV-2 is dependent on the presence of an antibody response, it would be impossible to determine the protective immunity threshold against COVID-19 by measuring the antibody titer alone. Functional assays that detect neutralizing antibodies are needed to understand better and define vaccination immunity, such as virus-neutralization assays [28]. Therefore, the lack of information on the neutralizing activity of the sera of the vaccinated people and the cellular response data could be considered as limitations of the present study. Also, the side-effects of the vaccines have not been formally evaluated. Other limitation of our study could be the small number of participants and not including older people with underlying diseases. Hence, larger groups are suggested to be included in the future studies to accurately measure the antibody response and compare the antibody titer across the age and gender. In conclusion, our study showed in a limited population in Iran, that viral vector-based vaccines produce higher levels of neutralized antibodies than inactivated vaccines, and their rates of non-response was lesser.

ACKNOWLEDGMENTS

The authors of this article are grateful to the participants and the Research Council of Arak University of Medical Sciences for supporting this study. This research received grant number 3927 from Arak University of Medical Sciences.

CONFLICT OF INTERESTS

The authors declare they have no conflict of interests.

REFERENCES