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ABSTRACT

Leishmaniases are a group of sand fly-borne diseases caused by protozoan parasites from species of Leishmania genus.
These diseases are reported in about 100 countries with a prevalence of 12 million people infected and incidence of 2
million people per year, putting approximately 350 million people at risk of the infections. Leishmaniases are endemic
and are considered as important public health problems in many provinces of Iran. The infection is transmitted through
the bite of phlebotomine sand flies. The sand fly salivates while biting the vertebrate host. The saliva of phlebotomines
consists of different molecules that are necessary for a sand fly to successfully take a blood meal. Additionally,
previous exposures to sand fly saliva indirectly affect the establishment of Leishmania in the vertebrate host.
Moreover, mice previously exposed to the saliva by injection or by uninfected sand fly bites have shown both humoral
and cellular immune responses against the salivary antigens that protects them against Leishmania infection.
Importantly, the immunization of mice with defined molecules from the saliva of the vector species has also conferred
a strong protection against Leishmania infection. This suggests that such salivary components may be considered as
candidates for a cocktail vaccine against leishmaniases. The current article briefly explains the potential of salivary
components of sand fly vectors as immunological items to prevent leishmaniasis. So far, there is no efficient vaccine
against these infections and efforts are required to be focused on developing effective and applicable vaccines against
leishmaniases.
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1. Epidemiology of leishmaniasis

Leishmaniases are a group of neglected tropical diseases caused global CL cases are reported from Afghanistan, Algeria, Iran,
by protozoan parasites of Leishmania genus. The inflicted Iraq, Saudi Arabia, Syria, Brazil and Peru [4-7]. CL is
disease is transmitted through the bite of sand flies. categorized to four clinical forms; namely, localized,
Leishmaniases are reported from about 100 countries with a recidivans, diffuse and mucosal. In localized form, the parasite
prevalence of 12 million infected people and an incidence of 2 is limited to the skin. After the incubation period, lesions (0.5 to
million people per year while approximately 350 million people 3 cm in diameter) appear on some exposed body parts like the
are at risk of the infection [1, 2]. The estimate of disease face, the legs and the arms. Self-healing is seen in most lesions
burden is 2357000 DALY (disability adjusted life years) [3]. after months or years while they may become everlasting scars
These complex diseases have different clinical forms, namely [8]. In recidivans form, the lesions relapse at the edge of the
cutaneous leishmaniasis (CL), visceral leishmaniasis (VL), post previous scars and it occurs in approximately 5% of CL patients
kala-azar dermal leishmaniasis (PKDL) and mucocutaneous infected with Leishmania tropica who have deficiency in cell-
leishmaniasis (MCL). Approximately 20 species of Leishmania mediated immune responses [4, 9]. Diffuse leishmaniasis leads
parasites are the causative agents of the infections, among them, to diffused lesions on the skin which occurs mainly in Africa
VL caused by Leishmania donovani is the most serious form and is transmitted by Leishmania aethiopica [10]. PKDL is a
which is fatal if left untreated. CL is a public health problem; form of diffuse leishmaniasis that occurs after up to 20 years in
however, it is not fatal and is caused by a number of various affected individuals with incomplete treatments [11]. MCL
Leishmania species. CL is endemic in approximately 82 causes disfiguring lesions and extensive damages in nasal, oral
countries with 1-1.5 million new cases per year. About 90% of and pharyngeal cavities which occurs mainly in South America.
In the Old World, it is caused by L. tropica, Leishmania major
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which about 10% have been considered as vectors of
leishmaniases. Around 70 out of 800 species of phlebotomine
sand fly are proven or suspected vectors of leishmaniases [14].
So far, 44 species of the sand flies (26 Phlebotomus species and
18 Sergentomia species) have been reported in Iran [15, 13].
Phlebotomine sand flies are small and hairy, with slender legs
and with a body length of seldom more than 3 mm. While
resting, they hold their wings in V shape above their abdomen
[12]. For their blood meal, they usually hop around on the host
before coming down to bite. Phlebotomine sand flies, unlike
mosquitoes, have silent attack. Because of their hopping
behavior, they are supposed not to disperse far from their
breeding sites. The dispersal distance varies with the species
and the habitat. The maximum dispersal distance is rarely more
than 1 km, except for one species (Phlebotomus ariasi) which
has a maximum dispersal distance of more than 2 km [16-21].
Phlebotomines are nocturnal or crepuscular insects, despite a
few species which are diurnal. Diurnal resting sites are rather
cool and humid. Their resting places include rodent borrows,
birds and termites nests, stables, caves, house basements,
toilets, cracks in walls, rocks or soils and forest vegetation as
well as tree holes. In most species, the females are mainly
exophagic and exophilic which bite outside and during the
gonotrophic cycle. Since they rest outside, they cannot be
efficiently controlled using inside residual spraying with
insecticides [12, 16].

Both male and female sand flies have sugar feeding from
natural sources such as juices of plants [22] and honeydews of
aphids [23-26]. The females have also blood feeding because
they need the blood to produce the nutrition required for their
egg production. Some species have autogeny, meaning that they
produce the first batch of eggs without the blood feeding [27].
The saliva of a sand fly has a composition which helps it to
have a successful blood meal and it also helps the parasite to
establish in its vertebrate host [28-31]. The saliva components
are not constant in sand flies with different species, sex, age,
generation and physiological stages [32-34]. Environmental
factors and geographical locations seem to affect the saliva
composition [35, 36].

3. Life cycle of Leishmania in sand fly and vertebrate
host

The life cycle of Leishmania has two parts; one part in the sand
fly vector and the second part in the vertebrate host. The
development of the parasite inside the vector initiates when the
female sand fly bites on its mammalian host and ingests the
blood containing macrophages infected with the amastigote
form of the parasites. Sand flies cut the skin with their
mouthparts and create wounds into which skin macrophages or
freed amastigotes are released and are then taken-up into the
sand fly gut. The environmental conditions change when the
parasites move from their mammalian host to the sand fly gut.
These changes include a decrease in the temperature and an
increase in the pH. These changes activate the morphological
transformation of the parasite into the procyclic promastigotes
which are weakly motile organisms with a short flagellum at the
anterior end of the cell. In this phase, the amastigotes transform
into procyclic promastigotes which are located at the posterior
end of the midgut. The parasites maturation period takes 1-2
weeks, resulting in infective metacyclic promastigotes, located
in the anterior of the gut [37]. During biting, the metacyclic
promastigotes are delivered into the skin of a new mammalian
host during the next blood meal, leading to the transmission of
the disease. When the sand fly bites a new mammalian host, the
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infective metacyclic promastigotes released during the blood
feeding are transmitted into the upper dermis of the skin. The
promastigotes are then phagocytosed by the macrophages and
differentiate into obligate intracellular amastigotes. The
amastigotes will eventually proliferate within the macrophages
and are finally released to the tissue to infect more cells. This
life cycle is completed when the sand fly takes up the parasite
during a blood meal at the infected skin [38].

4, Sand fly saliva and induction of immune responses and
protection

A Sand fly salivates while biting the skin of a vertebrate host.
The saliva of sand fly consists of different molecules which are
necessary for the insect to take its blood meal successfully and
to establish the parasite in the vertebrate hosts [39, 40]. The
salivary glands have a unicellular epithelial layer surrounding a
container for the saliva which consists of a repertoire of
proteins that vary upon parameters such as the physiological
state of the adult insect as well as its sex, age, generation,
species and geographical location [41, 32]. Moreover, the saliva
composition has been shown to change upon the environmental
conditions of the sand fly habitats [36]. After emerging, the
number of protein components gradually increase with the age
of the insect, reaching to the full amount in 3 to 5-day-old sand
flies. The amounts and components of the salivary proteins in
the adult females is more than the males [32].

The sand fly saliva has immunomodulatory characteristics and
induces specific immune responses including antibody
production and cellular immune responses. All examined vector
species in the Old and New World have shown to produce
immune responses in their vertebrate hosts [42]. The saliva of
sand fly is known to enhance Leishmania infection. Belkaid and
colleagues [43] have demonstrated that the injection of a low
number of L. major plus saliva of Phlebotomus papatasi could
enhance the infection in the ear dermis of naive mice.
Moreover, AMP and adenosine as immunomodulatory
components of P. papatasi have been shown to induce IL-10
production, to suppress TNF-a and IL-12 in a mouse model and
to decrease the expression of nitric oxide synthase gene in the
activated macrophages in order to prevent the generation of
nitric oxide [44-46]. In another study, AMP and adenosine
treatment in an experimental murine model of arthritis, have
affected the dendritic cells (DC) function to decrease Th-17
immune responses and to suppress the autoimmune responses
as well [47]. Another study has shown that P. papatasi saliva
could induce IL-4 response at injection site in mice [43].
Taking together, these works emphasize on the Th2 potential of
the sand fly saliva and its exacerbating properties in
leishmaniases. The work by Titus and Ribeiro [39] has shown
that the infection with L. major is highly exacerbated by the
presence of Lutzomyia longipalpis saliva. This saliva contains
Maxadilan, a 6.5 KDa peptide which is an effective vasodilator
and has the potential of inhibiting or modulating the
inflammatory and immune responses in mice, suggesting the
disease-exacerbating qualities of Lu. longipalpis saliva [48, 49].
Furthermore, upon addition of Maxadilan to mouse
macrophages in vitro, cytokines associated with Th2 responses
including IL-6, 1L-10, TGF-B are upregulated; however Thl
cytokines such as IL-12p70 and TNF as well as nitric oxide are
downregulated [50]. Maxadilan affects the cells which are
important for controlling of Leishmania infection. DCs
incubated with Maxadilan have been shown to exhibit lower
expression of co-stimulatory molecules (i.e. CD80 and CD86)
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and chemokine (CCR7) while inducing secretion of type 2
cytokines [51].

In a recent study with mouse macrophages, Lu. longipalpis
saliva has been shown to stimulate lipid body creation, leading
to production of prostaglandin E2, a molecule which could have
effects on the parasite dissemination [52]. Moreover in human
DC, macrophages and monocytes, Lu. longipalpis saliva is
reported to induce apoptosis of neutrophils, resulting in a higher
parasite load while it could change the expression of co-
stimulatory molecules and decrease the creation of TNF and IL-
12p40 in LPS-stimulated monocytes [53, 54]. The saliva
samples of P. papatasi, Phlebotomus sergenti or Lu. longipalpis
have been used to treat murine macrophages and monocytes
which have resulted in decreased multiplication of the mitogen-
activated murine splenocytes and inhibition of the production of
the Thl cytokine IFN-y [55].

In addition to in vitro incubation of the saliva to induce immune
responses, sand fly bites have also been used to induce
immunity in vertebrate hosts, in order to mimic the natural
route of the transmission. Repeated exposure to sand fly bites
can induce antibody production and cellular immune responses.
In this regard, a recent study in Esfahan province (a hyper
endemic area for CL in central Iran) has been published where
P. papatasi and Rhombomys opimus (commonly known as great
gerbil) are the main vector and reservoir hosts, respectively. In
this area, the main leishmanial agent detected from P. papatasi
was L. major [56]. This study has shown the presence of
antibody response in R. opimus against the sand fly salivary
antigens. R. opimus serum has been shown to strongly react
with a salivary antigen of P. papatasi collected in the study area
with a molecular mass of approximately 28 kDa [35] . This
protein may be PpSP32, a protein that is highly recognized by
humans bitten by P. papatasi [57]. More studies are
recommended to confirm the immunogenicity of this protein in
R. opimus to assess its potential as a marker of exposure to P.
papatasi. Another study which contributes to our knowledge of
the differential expression of the salivary genes among different
groups within a P. papatasi population has been conducted
under natural field conditions in Iran. This study has reported

Tablel. Protective potential of sand fly saliva against leishmaniasis.
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the expression pattern of two P. papatasi salivary transcripts of
PpSP15 and PpSP44 to be regulated by sand fly blood feeding,
activity season, accessory gland status and leishmanial infection
[58, 59].

In laboratory examinations, immune responses to sand fly
saliva have been detected in mice, hamsters, dogs and humans
after multiple exposures to the bites or inoculation of dissected
salivary glands from female P. papatasi, Phlebotomus
argentipes, P. ariasi, P. sergenti, Lu. longipalpis and Lutzomyia
intermedia [60-62, 49, 63-71, 33, 72-75].  Anti-saliva
antibodies have been associated with increased risk of CL
caused by L. major, L. tropica and Leishmania braziliensis in
Tunisia, Turkey and Brazil, accordingly [76, 68, 77]. In CL
cases, anti-saliva antibodies have been shown to induce
inflammation and vasculitis resulting in a greater numbers of
harboring cells, especially the local neutrophils of the skin,
leading to the exacerbation of the disease outcome [42].
Conversely, the presence of antibodies against the salivary
proteins of VL sand fly vector has resulted in protection in
humans and dogs [78, 79, 75]. Antibodies are believed to
neutralize the salivary proteins which can have an effect on
hemostasis, therefore preventing the migration of the infected
cells to the peripheral circulation and then to liver, spleen and
bone marrow [42].

The protection against leishmaniasis has been acquired when
experimental hosts were immunized by salivary gland
homogenate (SGH) or were repeatedly bitten by the sand fly
and then were challenged with SGH of the same sand fly
species and Leishmania parasites. However there is some level
of antigenic cross-reactivity among the salivary proteins of
some species. In a recent study, hamsters immunized with Lu.
longipalpis SGH, have shown protection when were challenged
with L. braziliensis plus SGH prepared from Lu. intermedia or
Lu. Longipalpis [80]. A summary of studies on the sand fly
saliva protective potentials is shown in Table 1. Although to
mimic Leishmania transmission in nature, it would be better to
use the Leishmania-infected sand fly challenge, this kind of
experiments are scarce and most studies are conducted with the
needle injections of SGH plus Leishmania parasites [41].

Salivary Proteins Sand fly Treatment with Protective immunity
PpSP15 P. papatasi L. major + (Yes)
PpSP44 P. papatasi L. major - (No)

Maxadilan L. longipalpis L. major +
LIM19 L. longipalpis L. infantum +
LIM19 L. longipalpis L. braziliensis +
LIM11 L. longipalpis L. major +
LIM11 L. longipalpis L. infantum -
LJL11 L. longipalpis L. infantum -
LIM17 L. longipalpis L. infantum -
LJL143 L. longipalpis L. major -

Previous studies have shown that anti-saliva antibodies are not
required for the protection in rodents [63]. In fact, a protective
anti-saliva immunity is associated with a delayed type
hypersensitivity (DTH) response distinguished by cellular
recruitment of macrophages and monocytes to the bite site and
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the production of Thl cytokines such as IFN-y and IL-12
which make the bite site environment unaccommodating for
Leishmania parasites and results in a less successful
establishment of the parasite in the host [61, 67]. A significant
fact in anti-saliva mediated protection is that at the moment of
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sand fly biting, there is a close proximity between the parasite
and the salivary proteins , in the microenvironment of the host
skin where anti-saliva DTH responses will interfere with the
parasite establishment [42]. After identification of the
protection, it is important to know which salivary proteins are
responsible for this protective immunity. The low number and
low complication of approximately 30 salivary proteins have
made it possible to screen for the salivary proteins accountable
for a DTH-Th1 response in several sand fly species [42].

The first sand fly species for which the protective salivary
proteins were identified was P. papatasi and the protein was
called PpSP15. Mice pre-exposed to PpSP15 exhibited a strong
DTH response against L. major co-injected with SGH of P.
papatasi [63]. Interestingly, after immunization with PpSP44
(a different protein of P. papatasi saliva), L. major infection
was enhanced. This result emphasized the different induced
immunity responses from distinct molecules of the same sand
fly species which had led to different outcomes of the disease
[67]. In spite of the fact that PpSP44 could produce a DTH
response and cellular recruitment to the skin bite site, the cells
did not produce IFN-y but they produced IL-4, instead. This
result suggests that anti-saliva DTH immune responses along
with IFN-y production is able to provide protection against L.
major infection [42]. Similar studies have been done to identify
salivary proteins from Lu. longipalpis which could induce
protective immunity against Leishmania infection. Following
immunization of a hamster model of VL with LIM19 salivary
protein from Lu. longipalpis, the parasite burden was shown to
be decreased in the liver for 5 months after the infection and a
strong DTH response with IFN-y production was induced, 48
hours after the exposure to the sand fly bites [81].

5. New approaches to the vaccine development

Previous studies have shown that the immune responses to
salivary proteins provide protection in rodent models of
leishmaniases. To be converted to a commercial vaccine, the
salivary proteins should overcome a few barriers such as the
variations among the sand fly populations, the differences
between the wild and the colonized sand flies and the
possibility of human desensitization [42]. Recently it was
shown that the colonization of P. papatasi can provide a saliva
associated protection. Mice immunized with SGH of F29 lab-
bred female P. papatasi could produce protection against L.
major co-inoculated with the same type of SGH while the mice
immunized with SGH of the wild-caught sand flies did not
produce any protection [33, 72, 82]. The reason for this may be
associated with the different amounts of the salivary proteins in
the colonized versus the wild sand flies rather than a genetic
variability [42]. The protection provided by PpSP15 against
Leishmania has been confirmed in mice and this protective
immune response has not been observed in Rhesus monkeys
[83]. Therefore, in different vertebrate hosts, different
molecules of the saliva are responsible to provide protection
against Leishmania infection [81, 70]. So far, no salivary
molecule from P. papatasi has been identified to confer
protection in humans [83]. Elnaiem et al. [84] have examined
the variability of PpSP15 between the colonized and the wild-
caught P. papatasi. The results have shown that the genetic
variation of PpSP15 was higher in the wild compared to the lab-
bred sand flies.

Currently, the majority of studies on the saliva rely on the long
term laboratory-reared sand flies. By using transcriptomic
analysis, the saliva of the wild versus the colonized sand flies,
collected from different geographical localities, have been

Volume 2- Number 3, 4- 2015

89

Hosseini-Vasoukolaei

compared. The obtained results indicate high levels of
homology between the saliva transcripts from different sand fly
groups [85]. Further proteomics analyses are required to
illuminate such differences.

Another barrier is possibly the desensitization of humans living
in the endemic areas. This concern should be tested in humans
from areas with frequent sand flies. In a recent study, this
theory has been examined where experimental mice were bitten
by 30 P. duboscqi every week for 15 weeks. The mice which
were repeatedly exposed to the sand fly bites were unable to
produce a protective anti-saliva immune response [74]. In the
endemic areas, humans are exposed to multiple sand fly bites
every day. The effect of such multiple exposures may lead to
human desensitization over time [42].

Another barrier may be the genetic variations among different
populations of the sand flies. The salivary protein Maxadilan,
has been reported to show a high degree of variation among
sand fly populations from different geographical locations [86],
while PpSP15 salivary protein was more conserved at amino
acid level among populations from Sudan, Egypt, Jordan and
Saudi Arabia [84]. It can be concluded that a conserved salivary
protein which successfully works across different geographical
locations would be a better vaccine candidate.

A vaccine candidate against leishmaniases should also be
examined by a challenge with Leishmania-infected sand fly. A
previous study has shown that the challenge with infected sand
flies is more powerful to disable the protection provided by a
vaccine than a challenge with parasites injected by the needle
[87]. A challenge with infected sand flies which mimics the
natural route of transmission, combines several unique
parameters including the sand fly saliva, the promastigote
secretory gel [88, 89], the infective metacyclic Leishmania
parasite and the sand fly probing and injury of the skin during
the host biting. It has been suggested that mimicking all of the
abovementioned parameters in a natural route of parasite
transmission would lead to the development of an efficient
human vaccine against leishmaniasis.

This review provides a summary of the studies on different
aspects of the sand fly saliva. The salivary proteins of sand flies
have been extensively studied and their functions have been
investigated. Vaccination with the components of the sand flies
saliva could bring protection against leishmaniases. In spite of
new findings in the vaccine industry, an effective vaccine
against leishmaniases has not yet been developed. In this
regard, the sand fly salivary proteins could be considered as a
vector-based vaccine against leishmania infections.
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