دوره 8، شماره 1 - ( 4-1400 )                   جلد 8 شماره 1 صفحات 46-36 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shams N, nazifi N, Forouharmehr A, jaydari A, rashidian E. Assembling the Most Antigenic Peptides of COVID-19 Immunogenic Proteins Along with a Molecular Adjuvant to Develop a Novel Polyepitope Vaccine: a Bioinformatics Investigation. vacres 2021; 8 (1) :36-46
URL: http://vacres.pasteur.ac.ir/article-1-265-fa.html
Assembling the Most Antigenic Peptides of COVID-19 Immunogenic Proteins Along with a Molecular Adjuvant to Develop a Novel Polyepitope Vaccine: a Bioinformatics Investigation. Vaccine Research. 1400; 8 (1) :36-46

URL: http://vacres.pasteur.ac.ir/article-1-265-fa.html


چکیده:   (2047 مشاهده)
Introduction: Many countries are presently concerned about providing a safe vaccine with minimal side-effects against COVID 19. Here, we aimed to develop a multiepitope vaccine by utilization of spike, envelope, nucleocapsid and membrane proteins of SARS-CoV-2 virus. Methods: Online servers were employed for forecasting the most robust B-cell, T-cell and IFN-γ epitopes to stimulate the immune system. Then the top selected epitopes alongside the sequence of Heparin-Binding Hemagglutinin Adhesin (HBHA) protein were applied to design a novel multiepitope vaccine, bioinformatically. The physicochemical characteristics and the protein structures of the proposed vaccine were defined using online tools. The docking process between Toll-like Receptor 4/Myeloid Differentiation Factor 2 (TLR4/MD2 receptor) and the designed recombinant structure was also investigated. Results: The designed construct had -0.210 GRAVY and 36.39 instability indices which make it theoretically stable. The designed construct was predicted to be soluble and non-allergenic. The approximate half-life of the proposed structure was computed 30 hours in mammalian reticulocytes and more than 10 hours in Escherichia coli. In its tertiary structure, 93% of the residues were in the core region and had a score of 52.73 for 3D verification and -5.55 for Z-score. Protein-protein docking of HBHA and TLR4/MD2 receptor was successful with the lowest energy of -1310.6 kcal/mol. Conclusion: The bioinformatics evaluations indicate that the designed structure is stable and immunogenic for development of a protein-based subunit vaccine against COVID-19.          
متن کامل [PDF 910 kb]   (985 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Vaccine development, efficacy and safety evaluation
دریافت: 1400/7/13

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Vaccine Research می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 All Rights Reserved | Vaccine Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.