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A R T I C L E I N F O                    A B S T R A C T 

Introduction: A modified Susceptible - Exposed - Infected - Quarantined - Recovered 

(SEIQR) epidemic model with vaccination is considered to understand the transmission 

dynamics of Ebola disease. Methods: The impact of vaccination as a control strategy is 

investigated in two cases: vaccination is a constant function of time and time - dependent 

vaccination. For the first case, the reproduction number    is derived and mathematical 

analysis reveals that the existence of equilibrium points and the qualitative properties of 

solutions of the resulting autonomous model are completely determined by   . For the 

second case, we conduct an analysis that is based on optimal control theory to determine 

optimal application of vaccination control. Results: It is shown that the disease - free 

equilibrium is locally asymptotically stable if      and unstable if     . When     

    , the disease - free equilibrium loses its stability and an endemic equilibrium point 

that is locally asymptotically stable emerges as also verified by demonstrating the 

existence of forward bifurcation at      using the method by Castillo - Chavez and 

Song. Optimal control analysis shows that that vaccination effort is affected by the cost 

associated with it. Vaccination control of Ebola can be carried out at maximum rate from 

the onset of the outbreak if it is not costly. Conclusion: Vaccination is an important 

intervention strategy in controlling Ebola outbreaks. 
    

Citation: 

 

        
 

INTRODUCTION 

The Ebola Virus Disease (EVD), also known as Ebola 

haemorrhagic fever, has captured the attention of the general 

public constantly causing fear due to its high infectivity as well 

as fatality rate ranging between 50% to 90% [1-4]. It is caused 

by Ebola virus which is a single - stranded RNA virus 

belonging to the order Mononegalevirales, family Filoviridae 

and genus Ebolavirus [5-6]. There are five different strains of 

Ebolavirus: the Zaire Ebola virus, Tai Forest Ebola virus, Sudan 

Ebola virus, Bundibugyo Ebola virus and Reston Ebola virus 

[5-8]. The strains Zaire Ebola virus, Sudan Ebola virus and 

Bundibugyo Ebola virus are responsible for several outbreaks 

in different parts of the African continent with the Zaire Ebola 

virus being the most virulent one [6, 8-9]. 

Because of its occasional occurrences in the African 

region, the Ebola virus disease (EVD) is one of the diseases that 

has also become a subject of recent modelling studies. A 

number of mathematical models integrating various 

intervention strategies have been formulated and analyzed in 

order to understand the transmission dynamics and control of 

the disease which has already claimed numerous lives since its 

discovery  in  1976.  In  the  last  seven  years,  the   world  has  

 

witnessed a very destructive outbreak of Ebola virus disease in 

West Africa and even if a recent outbreak of the disease in 

Democratic Republic of Congo had been successfully 

contained, the emergence of another dreadful outbreak remains 

a major concern including in previously uninfected areas [10]. 

During the previous EVD outbreaks, there have been no 

licensed vaccines available for use. It is only until the recent 

outbreak in Democratic Republic of Congo that an 

experimental vaccine became available and administered to, at 

least, control the outbreak. When cases of Ebola disease 

emerged during May and June 2018 in Democratic Republic of 

Congo, a vaccination strategy involving the recombinant, 

replication - competent, vesicular stomatitis virus - based 

vaccine expressing the glycoprotein of a Zaire Ebolavirus 

(rVSV - ZEBOV) was implemented and more than 3,000 

individuals were vaccinated using this vaccine as a part of the 

WHO response to EVD outbreaks [11-12]. Although not yet 

licensed at that time, this vaccine is proven to be safe and 

highly protective against Ebola virus based on the data from 

clinical trials conducted in Africa, Europe and US in 2015. Last 

December 19, 2019, the US Food and Drug Administration 

have finally announced in its website the approval of Ervebo 

(brand name of rVSV-ZEBOV), the first FDA - approved 
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vaccine that prevents EVD for 18 years of age and older [13]. 

Ervebo remains to be the only vaccine available against the 

disease to date. Another promising vaccine candidate that is on 

its advanced stage of development is an adenovirus type 26 - 

vectored vaccine encoding Ebola virus glycoprotein 

(Ad26.ZEBOV) boosted by a modified vaccinia Ankara - 

vectored vaccine encoding glycoproteins from Ebola, Sudan 

and Marburg viruses as well as the nucleoprotein of Tai Forest 

virus (MVA - BN - Filo) [14]. Initial report shows that the 

combination of Ad26.ZEBOV and MVA - BN - Filo confers 

immunity for at least 360 days and is well tolerated with good 

safety profile [15]. 

With the recently approved vaccine for EVD, Ervebo, an 

additional intervention strategy in the form of vaccination is 

available in dealing with future outbreaks of the disease. 

However, most of the countries in Africa that are being hit by 

EVD are developing countries where there can be few resources 

in battling such public health threat. Given the limitations on 

resources, strategic administration of the vaccine to control the 

disease is always the primary goal which we will be exploring 

via mathematical modelling in this work. 

The main objective of this study is to investigate the 

dynamics of Ebola disease in the population with vaccination as 

the main intervention strategy. The basic SIR model by 

Kermack and McKendrick was used by Rachah and Torres in 

[16] to understand the dynamics of Liberian population infected 

by EVD in 2014. The model has been extended by adding a 

vaccination term to study the effect of vaccination on the spread 

of the disease. Our model extends this model by accounting for 

the role of exposed individuals in disease transmission, adding 

quarantined class and allowing demographic process to take 

place during the outbreak. The present model also enriches the 

recent model due to Li et al. in [17] by incorporating a 

vaccination term and by using the standard incidence.  

 

MATERIALS AND METHODS  

Model Formulation 

To formulate the model, we make the following 

assumptions. First, we assume that there is vital dynamics as 

outbreaks of the disease can last for more than two years where 

the change in the population in that period of time is no longer 

negligible. Secondly, we assume that there is no vertical 

transmission of the disease, i.e., newborns are born susceptible. 

We further assume that exposed individuals are capable of 

transmitting the disease and dead bodies of individuals dying 

from the disease are properly disposed of and they do not 

contribute to the transmission of disease. Finally, we suppose 

that there is homogeneous mixing, i.e., all susceptible 

individuals have equal chances of becoming infected by 

exposed asymptomatic and infectious individuals. 

With the assumptions enumerated, we develop an SEIQR 

model with vaccination to describe the spread of Ebola disease 

within a population. The model consists of five classes that are 

functions of time t: the susceptible class     , the exposed class 

    , the infected class     , the quarantined class     , and 

the recovered class     . The equations that represent the 

change in each class at any time   are constructed as follows. 

The susceptible class is increased by a constant recruitment of 

individuals at rate  . Susceptible class is reduced when there is 

an adequate contact of a susceptible with an exposed or infected 

individual. The susceptible individuals acquire the infection 

from exposed and infected individuals at rates  
 

 
 and   

 

 
, 

respectively. Therefore, transfers of susceptible individuals to 

the exposed class occur at rates   
  

 
 and   

  

 
. We adopt the 

incidence terms   
  

 
 and   

  

 
 because contact rates in rural 

areas are constant. This is based on the observation in [18] 

which states that contact rate is in proportion with population 

density, which is constant in rural areas as they tend to expand 

as population increases to maintain a constant population 

density. The susceptible class is further reduced by vaccination 

at per capita rate   and by deaths due to natural causes at per 

capita rate  . Thus, the rate of change of the population for the 

susceptible class is given by 
     

  
     

  

 
   

  

 
       . 

As a result of contact (sufficient for transmission of infection) 

between susceptibles and individuals in either the exposed or 

infected class, the exposed population is increased by   
  

 
  

and   
  

 
. It is decreased by death due to natural causes at per 

capita rate   and by transfer of exposed individuals at per capita 

rate   to infected class. These lead to the equation 
     

  
   

  

 
   

  

 
       . 

The transfer of individuals from the exposed class to the 

infected class occurs when exposed individuals start to show 

symptoms and become more infectious. The infected class size 

is increased by   and it is diminished by quarantine 

(hospitalization) at rate ν for appropriate treatment measures, 

death due to the disease at rate    before the infected are 

brought to treatment sites, or death due to natural causes at rate 

 . Therefore, the change in infected class is described by the 

equation 
     

  
             . 

In this study, we emphasize that the quarantine is equivalent to 

hospitalization. The quarantined class is generated at rate  , 

decreases due to recovery from disease at rate  , from death due 

to the disease at rate   , or death due to natural causes at rate   

so that 
     

  
             . 

Finally, the size of recovered class is increased by vaccination 

at rate   and by recovery at rate   and decreased by death due 

to natural causes at rate  . The equation that describes the rate 

of change of population for the recovered class is given by 
     

  
         . 

 

These processes are outlined in the following schematic 

diagram: 

 
 

 
 

 
 
 
 

Fig. 1. Schematic diagram for the EVD model. 
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Thus the model which describes the spread of the Ebola disease 

within a community in the presence of vaccination is given by 

the following system of nonlinear ordinary differential 

equations: 

 
  

  
     

  

 
   

  

 
       

  

  
   

  

 
   

  

 
       

  

  
             

  

  
             

  

  
         

                  

(1) 

 

together with the following initial conditions         ,   

        ,           ,           ,   and           .                  

(2) 

 

Well - Posedness of the Model 

In this section, we demonstrate the well - posedness of 

model system (1). We proceed by showing the existence and 

uniqueness of solutions, positivity and boundedness. 

 

Existence and Uniqueness of Solutions 

 

Theorem 1: Consider system (1) with nonnegative 

initial conditions (2). Solutions to the initial value problem (1, 

2) exist and are unique for all      . 

Proof. If we introduce the transformations     ,     , 

    ,     ,      and let 

                   
  

then system (1) can be written in the 

form 

         
where                   

  with

       

    

              

   

    

              

        

     

    

              

   

    

              

        

                 

                 

              

 

 

Because fis are composed of sums of continuous functions, 

fis are continuous functions on    
and the partial derivatives 

   

   
 
   

   
 
   

   
 
   

   
 and 

   

   
 exist and are continuous. Therefore, a 

unique solution exists to the initial value problem (1, 2).  

 

Positivity of Solutions 

Since the model system (1) tracks the changes in human 

population, it is important to show that the solutions of system 

(1) with nonnegative initial conditions will remain nonnegative 

for all      . 

 

Theorem 2: Given that the initial conditions of system 

(1) are such that         ,          ,         ,          

and         . Then solutions     ,     ,     ,      and      

of model (1), with nonnegative initial conditions, will remain 

nonnegative for all      . 

Proof. Assume that         ,         ,         ,       
   and         . From the first equation of system (1), we 

have 
  

  
     

  

 
   

  

 
         

(3)

With the integrating factor  
*         ∫

    

    
     

 
 ∫

    

    

 
   +

 we can write (3) as 

 

  
{     

*         ∫  
 
 

    

    
     ∫  

 
 

    

    
  +

}    
*         ∫  

 
 

    

    
     ∫  

 
 

    

    
  +

      (4) 

 

Integrating both sides of (4) gives 

     
[         ∫  

 
 

    
    

     ∫  
 
 

    
    

  ]
 ∫  

 

 

  
[         ∫  

 
 

    
    

     ∫  
 
 

    
    

  ]
        

 

where S(0) is the constant of integration. Hence, 

          
 [         ∫  

 
 

    
    

     ∫  
 
 

    
    

  ]
  

 [         ∫  
 
 

    
    

     ∫  
 
 

    
    

  ]

 *∫  
 

 

  
[         ∫  

 
 

    
    

     ∫  
 
 

    
    

  ]
  +    

 

 

Using similar argument on the four remaining variables, we obtain the following: 
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Therefore, all solutions of (1) with nonnegative initial 

conditions will remain nonnegative for all time     .  

 

Boundedness 

 

Theorem 3: The closed set 

  {              
      

 

 
} 

is positively invariant and attracting with respect to model (1). 

Proof. Let     ,     ,     ,      and      be any solution of 

system (1) with nonnegative initial conditions. Adding all the 

equations in (1) yields the inequality 
  

  
                    

By using Gronwall’s inequality, we have 

 

     
 

 
 (     

 

 
*      

 (5) 

 

where      represents the initial population. It follows from (5) 

that      
 

 
 as    . In particular,      

 

 
 if      

 

 
. 

Thus, under the flow induced by (1), the region Ω is positively 

invariant. On the other hand, if      
 

 
, then either the 

solution enters Ω in finite time or asymptotically approaches 
 

 
 

as    . Hence, in the region Ω, model (1) is said to be 

mathematically and epidemiologically well - posed and the 

dynamics of the model will be considered in Ω.  

           

Local Stability Analysis 

In mathematical modelling’s point of view, the primary 

goal of having vaccination as a main public health intervention 

strategy during Ebola outbreaks can be interpreted as 

establishing conditions so that model system (1) can be brought 

to a situation wherein the disease - free equilibrium is stable 

and there is no stable positive equilibrium point. These 

considerations serve as a motivation to study the asymptotic 

properties of the equilibrium solutions of model system (1). 

 

Existence of Equilibrium Points 

The equilibrium points of model system (1) are the points 

where the derivative of  ,  ,  ,  , and   is zero, that is, 
  

  
 

  

  
 

  

  
 

  

  
 

  

  
   which can be found by solving the 

system 

    
  

 
   

  

 
         

  
  

 
   

  

 
         

              

              
          

 (6) 

 

for  ,  ,  ,   and  . Because of the involvement of the variable 

  in the first and second equations of system (6), we include 

the equation 
  

  
   in the computation of equilibrium points. 

Thus, we instead solve the system: 

 

    
  

 
   

  

 
         

  
  

 
   

  

 
         

              

              
          

              

                    (7) 

 

The third and fourth equations in (7), respectively, lead to 

  
      

 
    (8) 

and 

  
 

      
.    (9)  

 

From the sixth equation in (7), together with (9), we will have 

   
 

 
 

 

 
(   

   

      
)               (10) 

 

Using equations (8) - (10), then the first equation in (7) yields 

            

  
  

              
 

 
 

*  (   
   

      
)  +

      
  [(  

      

    )  
   

 (   
   

      
)]  

 

(11) 

 

Using (9) and (11), then we can also have 

 

    
 

 
, *

 

 
*  (   

   

      
) +

      

 
 *(  

      
 

   ) 
   

 
(   

   

      
)+ 

+  
  

      
 - 

(12) 

 

The second equation in (7), gives the equilibrium condition 

         
 

 
        

where, after substituting (8)-(11), we obtain 

 

     
      

 
[(  

      

 
   *  

   

 
(   

   

      
*]   

 * (  

      

 
   *  

                   

  
+    

 

which has two solutions. One solution is      where we 

obtain the following from equations (8), (9) , (11) and (12), 

respectively: 

                       
 

   
, and        

 

      
. 

Hence, the solution I0 = 0 corresponds to the disease - free 

equilibrium which we denote as P0. The other solution is given 

by: 

 [
 D

O
I:

 1
0.

52
54

7/
va

cr
es

.8
.1

.2
3 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 v
ac

re
s.

pa
st

eu
r.

ac
.ir

 o
n 

20
25

-1
0-

26
 ]

 

                             4 / 13

http://dx.doi.org/10.52547/vacres.8.1.23
http://vacres.pasteur.ac.ir/article-1-235-en.html


Tullao et al.                                                                                                                    SEIQR Epidemic Model with Application to Ebola Disease 

27 

2021 Vol. 8 No. 1 

  

 

   
 (  

      

 
   )  

                   
  

     
      

 
[(  

      

 
   )  

   
 

(   
   

      
)]

 

 

                   
  

      

     
      

 
[(  

      
 

   )  
   

 
(   

   
      

)]
 

   
            

 [(  
      

 
   )  

   
 

(   
   

      
)]

 

 

which corresponds to the endemic equilibrium, denoted as   , 

and this exists uniquely in the interior of   provided 

   
                 

                  
    

The quantity    is the basic reproduction number of our 

model which we will derive in the succeeding section. We state 

the following theorem on existence of equilibrium points of the 

model. 

 

Theorem 4: If      , then model system (1) has only 

the disease - free equilibrium  

                 (
 

   
       

  

      
) with    

 

 
 in  . If 

  , then model system (1) has 

two equilibrium points: the disease - free equilibrium    and a 

unique endemic equilibrium  

                   , where 

 

   

 
 

*  (   
   

      
)   +

      
 

 [(  
      

 
   )  

   
 

(   
   

      
)]   

 

 

   
      

 
   

 

   
            

 [(  
      

 
   )  

   
 

(   
   

      
)]

 

 

   
 

      

   

 

   
 

 
{ [

 
 

*  (   
   

      
)   +

      
  [(  

      

    )  
   

 (   
   

      
)]   

]  
  

      

  } 

 

with 

   
 

 
 

 

 
(   

   

      

*     

 

The Basic Reproduction Number 

In this section, we derive the basic reproduction number 

   which is interpreted as the average number of secondary 

infections generated by a single infectious individual when 

introduced to a wholly susceptible population [19-20]. Theorem 

4 shows that a disease - free equilibrium always exists for 

model system (1) and is given by                  

(
 

   
       

  

      
). The infected compartments of model 

system (1) are  ,  and   and the noninfected compartments are 

  and  . We let               , i.e. infected compartments 

first, and follow the general procedure developed by van den 

Driessche and Watmough in [20]. We will take    

              (
 

   
       

  

      
) to be the equivalent 

formulation for the disease - free equilibrium. Then we can 

write model system (1) in the form 

 
  

  
          ,  (13)                    where 

 

     

[
 
 
 
   

  

 
   

  

 

 
 
 
 ]

 
 
 
 

       

 

and 

 

          

[
 
 
 
 
 

      

            
            

  
  

 
   

  

 
         

        ]
 
 
 
 
 

. 

 Closely following [32], because there are m = 3 

infected compartments,   and   are     matrices of the form: 

 

  [
   

   
    ]       and        [

   

   
    ] 

with            . Matrices   and   are found to be 

  [
  

  

  
  

  

  
 

   
   

],       [
     
         
         

]. 

 

Hence, the next generation matrix is given by 

 

     [

  
  
  

   
 

   
  
  

             

  
  
  

      
 

   
   

]. 

 

The basic reproduction number denoted by    is defined 

to be the spectral radius of the next     generation matrix     . 

Therefore, 

 

           
                 

                  
  

 

Stability of Equilibrium Points 

As established in Theorem 4, under the condition that 

    , our model has only one biologically feasible 

equilibrium point which is given by the disease - free 

equilibrium (DFE) that represents a community that is free of 
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the disease. When     , then in addition to the DFE, there is 

an endemic equilibrium (EE) which represents a community 

where there is disease prevalence. In this section, we study the 

stability of these equilibrium points. We present the following 

result. 

 

Theorem 5: The disease - free equilibrium point 

                 (
 

   
       

  

      
) is locally 

asymptotically stable if      and unstable if     . 

Proof. The local stability of DFE is governed by the 

eigenvalues of the Jacobian matrix. To ensure local stability of 

the DFE, the requirement is that the eigenvalues of the Jacobian 

matrix of model system (1) evaluated at that point must have 

negative real part. The Jacobian of (1) evaluated at the DFE    

is 

      

[
 
 
 
 
 
 
          

  

  
   

  

  
  

   

  

  
        

  

  
  

             

             
      ]

 
 
 
 
 
 
 

 

(14) 

with characteristic equation 
                                            

where  

             
   

   
  

 

                 
                 

   
  

The eigenvalues of (14) are precisely the roots of equation (15). 

Clearly, there exist three roots      ,              

and           which are always negative. The local 

stability of    now depends on the two roots coming from the 

equation            . From the condition     , we 

can derive the following inequalities: 

 

    
   

   
 

    

             
 

(16) 

 

and 

              
                 

   
. 

 (17) 

From the inequality in (16), we obtain 

 

          
    

             
   

and from (17), we have       
 

Since    and    are positive, the product      is also 

positive. According to Routh - Hurwitz criterion, these roots 

have negative real parts. We note that if      then      so 

that at least one of the roots is positive. Thus, the disease free 

equilibrium    is locally asymptotically stable if      and 

unstable if     .     

Now, to show the local stability of the endemic equilibrium 

point, we examine if all the eigenvalues of the Jacobian matrix 

of model system (1) evaluated at                     with 

                  have negative real parts. The 

Jacobian matrix of (1) at EE    is given by 

 

      

[
 
 
 
 
 
                

  

  
      

  

  
       

            
  

  
         

             

             
      ]

 
 
 
 
 
 

   

(18) 

where 

     
  

  
   

  

  
 ,      

    

  
    

    

  
  and                         

     
  

  
      . 

The characteristic equation of (18) is obtained as 

      
     

     
          , 

(19) 

where 
             

                               

                                                      

                                                    

                                        

                                               

 

 

with 
                   

                        (  
  

  
   )             

                (   
  

  
   ) 

                                           

   (   
  

  
   )   (   

  

  
   )          (  

  

  
   )     

        
 

Algebraic manipulations on    and    and the use of the identity 

 

  

  

  

              

lead to the following simplified forms: 
 

                                                 

                                                 
 

 

By the Routh - Hurwitz criterion, all roots of (19) will have negative 

real parts if the following conditions are satisfied:    ;          ; 

         
      

        ;                        
   ; 

and                       
   

        
         

        
      

    
      Because 

 

     

  

  

        
        

              

   

and 

      (  

  

  

   

  
  

*(  
  

  

*    

 

since       and 
  

  
  , it follows that     ,      and     . 

Hence,    is positive. As a matter of fact, all the coefficients of the 

characteristic equation (19) are positive, i.e.,      for              . 

Now, we determine an expression for           : 
 

                     (                

  

  
  *             

 

          
                      

 

 

Since the expression                 
  

  
   is positive, it 

follows that         is also positive. Thus we can state the following 
theorem. 

 

Theorem 6: The endemic equilibrium point P1 is locally 

asymptotically stable if the following conditions are satisfied:         
               

   ;                        
   ; and 
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Bifurcation Analysis 

As defined by Strogatz [21], bifurcation is the qualitative change in 

the dynamics of the system as a parameter in the system is varied. In this 
study, we carry out bifurcation analysis to further investigate the local 

stability of EE. To do this, we study the bifurcation of model system (1) at 

     using approach established by Castillo- Chavez and Song that is 
stated as Theorem 4.1 in paper by Castillo-Chavez and Song [22]. This 

approach is based on Center Manifold Theory and is used widely to 
examine the existence of a forward or backward bifurcation. When the 

bifurcation is forward, the disease - free equilibrium is locally 

asymptotically stable for R0 < 1 which implies the gradual disappearance of 
the disease in the community whereas when R0 > 1 the endemic equilibrium 

point is locally asymptotically stable which implies that the disease can 

invade the population. In order to apply the theorem, we need to introduce 

the following transformations:     ,     ,     ,     ,     . 

Letting                   
  then system (1) can be written as 

  

  
     , 

where                   
 . Hence we have 

 
   

  
     

    

              
   

    

              
            

   

  
   

    

              
   

    

              
            

   

  
                   

   

  
                   

   

  
                

 

 

(20) 

 

We pick    as our bifurcation parameter. Setting      and solving 

for      
   gives 

 

  
  

          (      
  

  
)

   

  

Here, the DFE is the equilibrium of interest, i.e.      . The 

Jacobian matrix of the transformed system (20) evaluated at the disease - 

free equilibrium point    and with      
  is 
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The matrix        
   has a simple zero eigenvalue, say,     , and 

all other eigenvalues are negative or have negative real parts. We let 

                  
 be the right eigenvector associated with the 

eigenvalue      so it satisfies 
 

       
               

       
thus, 
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from which we get the system 
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      +      

 
  

  
     

                  
(21) 

                 

              

Solving system (21), we get 

 

   ( 
             

      
 

      

 
   

 

      
 
                               

               
)
 

 

(22) 

Since    is a nonnegative equilibrium of the model,    and 

   (the first and the fifth components of   ) are both positive. 

Hence,    and    do not need to be positive based on a remark 

in [7]. 

We further let                   
  be the left 

eigenvector associated with the eigenvalue      so it satisfies 

        
     

which gives the system 
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(23) 

                  

       

 

We solve system (23) with  
      

 
        

to achieve the property     . We thus obtain 
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The sign of   is associated with the following non - zero 

partial derivatives of   evaluated at       
  : 
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while the sign of   is associated with the following non - zero 

partial derivatives of   evaluated at       
  : 
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The bifurcation coefficients   and   are evaluated as follows:  
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Using (22) and (24), it follows that 
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Because (       
  

  
     )   , we have that 

    and    . Based on item (iv) of the theorem, we 

conclude that when      
  changes from negative to positive, 

   changes its stability from stable to unstable. 

Correspondingly, a negative unstable equilibrium becomes 

positive and locally asymptotically stable and a forward 

bifurcation appears [20]. 

 

Theorem 7: Model system (1) with constant vaccination 

control exhibits a forward bifurcation at     . 

Because the direction of the bifurcation of system (1) is 

forward, existence of another equilibrium point (the EE) 

bifurcating from the nonhyperbolic equilibrium point (the DFE) 

is guaranteed when      and this point is locally 

asymptotically stable. Moreover, Theorem 7 also shows that a 

backward bifurcation scenario is impossible for model system 

(1) which has an epidemiological implication that reducing the 

basic reproduction number to below one is sufficient to wipe 

out the disease. 

 

Optimal Control Analysis: Formulation of the Problem 

Optimal control theory has always been of great help to 

many social planners to arrive at optimal strategies that will 

minimize the number of infected individuals and the cost 

associated with implementing the intervention measures [23]. 

Determining how to effectively administer vaccination during 

EVD outbreak to minimize the number of cases and associated 

cost is an interesting problem that is helpful in designing public 

health policy when resolved. To gain introductory insights into 

this complicated and broad problem, we reconsider the model 

system (1) with vaccination rate that is time - dependent, that is, 

we change the parameter   to      so that model system (1) 

becomes 

 
  

  
     

  

 
   

  

 
          

  

  
   

  

 
   

  

 
       

  

  
              

  

  
             

  

  
            

 

(25) 

 

The control      is used to control the infection by 

vaccinating susceptible individuals which means that we have 

more recovered individuals who cannot catch the disease within 

a certain period of time. Our goal of minimizing the number of 

infected individuals and the cost associated with the vaccination 

control on [0,tf] where tf is the time to be controlled, can be 

viewed mathematically as finding a control ξ (t) and associated 

state variables   ,   ,   ,    and    that minimize the objective 

functional given by 

 (    )  ∫ *     
 

 
     +   

  
 

.          (26) 

 

In the objective functional (26), the quantity   represents 

the weight parameter for the vaccination control. The cost 

associated with the vaccination program is described by the 

term 
 

 
     . This choice for the representation of the cost in 

implementing the vaccination control is due to nonlinear costs 

that can arise potentially from high intervention levels [24- 25]. 

Such choice of representation for the cost regardless of control 

strategies being implemented is used widely in the literature. 

The cost for vaccination control can include the cost of the 

vaccine, cost of syringes, shipment - related costs and other 

incidental expenses [26]. The cost per vaccine according to the 

estimate that was given in [26] is $ 135.90. If we set       as 

the optimal vaccination control, then our problem is 

summarized as 

 

            { (    ) |         
subject to system (25) with initial conditions                          

                                                      
                              (27) with 

                                                   
                    

where      is a constraint that stands for the limitations on 

vaccination effort, that is, there is a maximum rate at which 

susceptible individuals may be vaccinated in a given period of 

time. 

 

Characterization of the Optimal Control 

To find the optimal solution, our next step will be to define 

the Hamiltonian for the problem and then use the Pontryagin’s 

Maximum Principle to obtain the characterization for the 

optimal control. In view of these, we begin defining the 

Hamiltonian 

       
 

 
        *    

  

 
   

  

 
 (      ) +    *  

  

 
 

  
  

 
       +                                    

                
 

where   ,   ,   ,   , and    are the adjoint variables 

corresponding to states         and  , respectively. We state 

and prove the following theorem. 

 

Theorem 8: Given an optimal control    and 

corresponding state solutions   ,   ,   ,    and    of the state 

system (25), there exist adjoint variables   ,   ,   ,   , and    

that satisfy the system: 
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  )                    
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  )           
    

     
 

               
   

  
             

    

     
          

  

  
(  

  

  
)  

(     )          .     (28)  
   

  
        (
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)       

with transversality conditions 
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where                  . Furthermore, the optimal 

control    is given by 
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Proof. Differentiating the Hamiltonian H with respect to 

the states and putting 
                                                

                  

 

with                   give the following 
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(30) 

 

According to Pontryagin’s Maximum Principle, the adjoint 

system is given by 
   

  
  

  

  
 
   

  
  

  

  
 
   

  
  

  

  
   

  
  

  

  
 
   

  
  

  

  

 

To find the characterization of the optimal control       

we consider the following cases concerning the bounds of the 

control: 

i. On the set                    , we have 
  

  
|
  

               
      . 

Solving for       yields 

      
         

 
  

ii. On the set              ,we have 

 
  

  
|
  

               
        . 

and obtain 
         

 
          

iii. On the set                 we have 
  

  
|
  

               
         

and obtain 
         

 
            

Combining the three cases above, we found the 

characterization of       to be 

         (     (
         

 
     )+  

RESULTS 

Numerical Simulations  

In this section, we carry out numerical simulations for the 

proposed SEIQR model with constant and time - dependent 

vaccination rate using data on the 2014 Ebola outbreak in 

Guinea. During the said outbreak, no licensed vaccine was used 

to protect the susceptible individuals but the WHO had raised 

awareness about the disease in order to reduce risk of 

transmission and encouraged hospitalization for the infected 

[27]. We perform numerical simulations by letting the vaccine 

related parameter   be variable. Furthermore, as exposed 

individuals are not easily avoided because they do not exhibit 

symptoms of the disease, we choose a value for    such that 

      in our simulations. Based on [17], the initial values for 

the 2014 Outbreak in Guinea are:                ,      

  ,        ,        , and       . Table 1 displays 

the values for parameters of the model which are taken from 

recent works on Ebola modelling in Guinea that are based on 

actual data. 

 

Table 1. Numerical values for parameters of the model. 

Parameter Description Value Source 

  recruitment rate 1159 [17, 28-29] 

  natural death rate 2.6578      [17, 29] 

   transmission rate of 

exposed individuals 

0.18 - 

   transmission rate of 

infectious 

individuals 

0.14 [30] 

  vaccination rate - - 

  rate at which 

exposed individuals 

become infected 

 

   
 

[31, 32] 

ν quarantine rate 0.5000 [31] 

   disease - related 

death rate of 

infected 

unquarantined 

individuals 

0.2950 [31] 

   disease - related 

death rate of 

quarantined 

individuals 

0.0149 [31] 

γ recovery rate 0.0011 [31] 

 

As shown in Fig. 2, our simulation results using the 

parameter values in Table 1 and, in the meantime, assumed the 

absence of vaccination, i.e.    , which was the case during 

the 2014 outbreak in Guinea. In the absence of vaccination, our 

value for the reproduction number can be as high as 1.9216. 

One can see from the simulations the sharp decline in the 

number of susceptible individuals in about 70 days. This is 

because of the movement of the members of this susceptible 

class to other classes due to the disease. Also, Fig. 2 also 

depicts an increase in the number of exposed, infected and 

quarantined individuals which reaches a peak at about 132 

days, 134 days and 160 days, respectively, and before declining 

to positive steady states. At the peak, 16.32  of the total 

population will be exposed, 2.11   will be infected and 

29.97  will be quarantined. It is only after about 60 days that 
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the number of recovered individuals begins to increase due to recovery from disease by drug or support treatment.  

 
 

 

The effect of having a vaccination campaign for Ebola 

disease is demonstrated in Fig. 3. In the simulation, we assume 

that the vaccination rate   is 0.2530. In the figure, we can see a 

steady decline in the number of susceptible individuals before 

stabilizing to a positive value. This is because of the movement 

of the members of susceptible compartment to the recovered 

compartment due to vaccination resulting in the observed 

steady increase in the number of recovered individuals before it 

also stabilizes to a positive value. The figure also shows a 

steady decline in the number of infected individuals going to 

zero while the number of exposed and quarantine individuals 

both reach a peak at about 3 days and 18 days, respectively, 

before finally settling down to zero. 

In about 60 days, there will be no more infected 

individuals which indicates Ebola disease elimination from the 

population because of the presence of vaccination. This must be 

the case because of the reduced value of the reproduction 

number. Due to the vaccination rate         , the value of 

the reproduction number greatly decreased to approximately 

0.0002 which is less than unity.

Fig. 2. Simulation results using parameter values in Table 1 assuming the absence of vaccination 

measure. 

Fig. 3. Simulation results using parameter values in Table 1 and with vaccination rate 𝜉        . 
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From the definition of the basic reproduction number of 

the model, we can derive a quantity known as the critical 

vaccination rate for susceptible individuals. To obtain the 

critical vaccination rate, we set      and solve for   which 

gives 

         ̃ (  
 

  ̃

) 

where   ̃ is the reproduction number in the absence of 

vaccination. We note that the critical vaccination rate is positive 

only when   ̃   . If   ̃   , then any initial vaccination rate 

is capable of putting the situation under control. The condition 

     holds when        . Thus, a vaccination rate that is 

maintained at         may succeed in controlling the disease 

in the long run. A vaccination response that falls below the 

critical vaccination rate may not be helpful in dealing with the 

disease and reduced vaccination effort may only lead to disease 

persistence as         is equivalent to      which is the 

condition for the emergence of an endemic equilibrium that is 

locally asymptotically stable. 

We now turn our attention to the numerical study of the 

time - dependent vaccination as a control strategy in the course 

of Ebola epidemics. Systems (25) and (28) together with the 

initial conditions (27) and transversality conditions (29), 

respectively, form part of what is known as the optimality 

system. The optimality system which is composed of ten 

differential equations is solved numerically using the Forward - 

Backward Sweep Method that was discussed in full detail in 

[33]. In the simulation, we set the time period for the control at 

        days and the upper bound for the vaccination control 

at           while the weight on the cost of vaccination 

program is arbitrarily chosen for illustration purposes. 

Simulation results showing the impact of optimal 

vaccination strategy on the exposed, infected and quarantined 

groups are presented in Fig. 4. Rapid decrease on the number of 

infected individuals is seen if optimal vaccination is employed. 

Though initially there will be a slight increase in the number of 

exposed and quarantined individuals, this only lasts for several 

days and is followed by a continuous fall that leads to Ebola – 

free stage.

 

 

 

As depicted in Fig.5, the evolution of the control profile 

over time. It shows that if     , then it is optimal to start 

vaccination at the maximum rate but for the first two days only 

after cases are detected and decrease it in time. If we can exert 

this required effort on vaccination then we can have a 

community that is free from the disease. 

With the controlled model, we notice that vaccination, 

depending on the cost associated with it, cannot always be 

carried out at maximum rate. As an example, when      , 

the optimal way is to administer vaccination at the beginning 

starting with the 55  rate only and gradually decrease it in time 

as shown in Fig. 5 right panel. Thus, as the cost of vaccination 

control becomes expensive, it will not be optimal to start the 

vaccination strategy at the maximum rate. This finding agrees 

with the result that is given earlier in [34] using a simpler 

model. 

 

 

 

 

Fig. 4. Dynamics of the exposed, infected and quarantined individuals with optimal vaccination and without vaccination for 𝑐    . 
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DISCUSSION 

This study mainly explores the importance of vaccination 

as an immediate response in mitigating the spread of EVD. 

Because EVD possesses a considerable incubation period and 

because we want to reflect in the model the effect of quarantine 

(or hospitalization) measure which played a major role in 

containing past outbreaks of the disease, our model is more 

realistic for our objective than SIS - type models. For the model 

with constant vaccination, we derive the basic reproduction 

number    using the next generation matrix. It is shown that 

the existence of equilibrium points and the qualitative 

properties of solutions of the model with constant vaccination 

are completely determined by the basic reproduction number 

  . We prove using Routh - Hurwitz criterion the local stability 

of the equilibrium points. We see that the disease- free 

equilibrium of the system is locally asymptotically stable if 

     and unstable if     . If      then a unique 

endemic equilibrium point exists and it is locally asymptotically 

stable which means that the infection will remain in the 

community. The existence of a forward bifurcation at      is 

demonstrated using the approach by Castillo - Chavez and 

Song. The result on the existence of a forward bifurcation 

suggests that maintaining the reproduction number    to below 

unity by using vaccination measure is sufficient for disease 

eradication and its existence precludes the occurrence of 

backward bifurcation scenario wherein disease persistence is 

still possible even if we are successful at reducing    to below 

unity. In the simulation stage, we use a set of parameter values 

from various literature that considered Ebola disease to 

illustrate possible scenarios to expect when there is a 

vaccination campaign for the disease. Our simulations show 

that if     , then the solutions tend to the disease - free 

equilibrium whereas if     , then there will be disease 

persistence which matched our theoretical results. From the 

expression of the basic reproduction number of the model, we 

compute the critical vaccination rate which can serve as a basis 

for determining what vaccination rate is capable of controlling 

the epidemic. 

For the model where we allowed the vaccination to vary 

with time, we conduct a study based on optimal control theory 

acknowledging the fact that in situations where our ultimate 

objective is to stop the spread of a disease through 

implementation of available control strategies, there will always 

be limitations on resources which are unavoidable. The optimal 

control study helps us determine an optimal vaccination 

strategy which has the potential to minimize the number of 

infected individuals and thus the outbreak size. The 

characterization of the optimal vaccination control is derived 

with the aid of Pontryagin’s Maximum Principle. In our 

simulations we use the same set of parameter values used in the 

simulation of the model with constant rate of vaccination. 

Simulations reveal that if we apply optimal vaccination, then 

disease eradication is more pronounced and is achievable in a 

short period of time as compared to the situations with no 

vaccination at all, that is, we only rely on quarantine (or 

hospitalization) as a control measure. The simulation results 

enable us to address public health - related questions whether 

we start vaccination control as soon as possible or delay it for 

some time and if we should start vaccinating at maximum rate 

or not. 

For future considerations, the authors suggest that a 

sensitivity analysis using the method due to Chitnis et al. in 

[35] be performed to identify other control measures that may 

be implemented along with vaccination to achieve better results 

in controlling the disease. The authors also recommend looking 

into the dynamics of the disease when vaccination and 

quarantine controls are both time dependent. 
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