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The field of HIV vaccines received a “boost” with around 30% protection obtained in the
RV 144 randomized, double-blind, efficacy trial in Thailand. Currently, 560 clinical trials in
HIV vaccine development are registered as complete and results are expected from several
of these studies. The modest success attained at this time may be attributed to early
attempts at identifying an animal model to test vaccine efficacy. Macagque models of HIV-1
infection have revealed viral infection, transmission, pathogenesis, and prevention.
Identification of simian immunodeficiency virus (SIV) and its related strains served as the
macaque counterpart of HIV and through genetic engineering, enabled chimera
development that explored how macaques respond to a human antigen as well. Along with
understanding viral infection, it is worth exploring the genetic repertoire of macaques for
determining how the major histocompatibility complex and anti-retroviral restriction
factors offer barriers to viral replication.
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INTRODUCTION

In spite of vast advances in medical science, there has been
no better animal model of HIV than the macaque, which, owing
to its immunology, reproductive physiology and anatomy that
are highly comparable to humans, best reflects the progress and
pathogenesis of HIV. Several aspects of HIV transmission and
immunology are best studied in the macaque, even though
humanized mouse models of HIV are now being developed [1].
These studies are essential for pre-clinical safety and efficacy
testing of candidate vaccines and other therapeutics. While the
macaque model of choice for several decades has been the
Indian rhesus macaque, efforts to develop other macaque
species as HIV models have resulted in the use of the
cynomolgus macaque and the pigtail macaque for testing
vaccine efficacy. Needless to say, the choice of a particular
macaque model is significantly affected by the vaccine being
tested both in terms of immunologic response and control of
viremia. This review explores immunobiological responses in
the macaque to SIV and its related vectors and highlights the
impact of host immunogenetics on HIV vaccine development.

The need for developing new macaque models for HIV
vaccine studies is compelled by the fact that not all macaques
are equally permissive to various vaccine vectors. The two most
common macaque species currently used in HIV research are
the cynomolgus macaque (Macaca fascicularis) [2] and the
rhesus macaque (Macaca mulatta) [3]. Even though they
diverge by ~2 million years, cynomolgus and rhesus macaques
are 99.6% genetically similar [4], [5]. However, these macaque
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species have unique region-specific characteristics that have
been unravelled by genetic sequencing. This is evident in the
case of rhesus macaques, which are of Indian, Chinese and
Indian/Chinese hybrid species [6], or cynomolgus macaques,
which may be of Mauritian, Filipino or Vietnamese origin or a
mix of these depending on the geographic source of the
animals. Macaque hybridization between vastly different
macaque species and subsequent genomic exchanges is
exemplified by the estimation that ~30% of the genome of
Vietnamese cynomolgus macaque is of Chinese rhesus
macaque origin [7] while their genetic divergence is estimated
to be approximately 0.4% [8], [4]. While it is important to
acknowledge that animals are inefficient efficacy and safety
models, currently available options are our best bet in our
search for vaccines, which require better understanding of
immunological variability. A recent study [9] profiling immune
signalling between and within species of macaques, mice, and
healthy humans showed significant differences in the
frequencies of many populations of blood cells (Fig. 1).
Humans, mice and African green monkeys (AGM) have fewer
CD4+- CD8+ T cells compared to macaques; mice have 10-fold
lower numbers of neutrophils than all primates; all non-human
primates have approximately three-fold more B lymphocytes
than humans, and mice have approximately 10-fold more B
lymphocytes than humans; humans have a higher ratio of
classical to non-classical monocytes than any other species
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examined [9]. These findings indicate that model species should
be evaluated based on their relevance to the experiment at hand.

Regardless of gene similarities, cynomolgus macaques are
very different from rhesus macaques and this is exemplified by
the inability of rhesus macaques to be infected by the human
varicella zoster virus (VZV) [10] unlike the cynomolgus
macaque [11], which makes the latter an ideal candidate animal
model to examine the development of varicella-based vectors
against SIV/HIV [11]. Further, a rhesus macaque-derived
cytomegalovirus (CMV)-based BAC vector (RNCMV-eGFP)
was not able to infect cynomolgus macaque [12], while rhesus
macaques were previously shown to be permissive to the same
vector [13]. Yet another example is that of a mutant
SIVmac239 virus that established infection in both rhesus and
pigtail macaques. Viremia was rapidly suppressed in pigtail
macaques to levels of <15-50 copies/ml in contrast to rhesus
macaques and reflect species-specific differences, with virus
control being superior in pigtailed macaques that typically
exhibits more rapid disease progression following wild-type
SIV infection [14]. Therefore, host species-specificity and
tropism have to be considered in earnest while designing
vectors, in addition to other factors that influence the outcome
of a vaccine trial in macaques.
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Fig. 1: Percentage of the total number of gated cell types by species [9]

Macaques as HIV Models of Disease Pathogenesis

Macaques belonging to the Cercopithecoidea superfamily
are currently being used in AIDS vaccine research and mainly
comprise rhesus [3], cynomolgus [2] and to a lesser extent,
pigtail macaques (Macaca nemestrina) [3]. Rhesus macaques
are mainly of Indian or Chinese origin, though smaller
populations of Burmese origin are also used in SIV research
[15]. Geographic concordance and phylogenetic analyses
corroborate the notion that multiple cross-species transmission
events of an SIV strain named SIVcpz from primates to humans
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gave rise to all known HIV-1 and HIV-2 groups and subtypes
[16]. African non-human primates such as the sooty
mangabeys, AGMs and mandrills support high burdens of SIV
without overt clinical disease manifestations but show lower
levels of immune activation than HIV-infected humans or SIV-
infected Asian macaques. Rhesus, cynomolgus and pigtail
macaques do not harbour SIV in the wild but when inoculated
with SIV or SHIV, they exhibit clinical and immunological
features of HIV infection in that there is a decline in CD4+ T
cells and animals progress to AIDS or SIV-AIDS. The
remarkable similarities are reinforced by the utilization by SIV
of the same receptor for attachment and entry into cells as HIV.

Morphological Variations Among Macaques that
Facilitate Pre-Clinical Testing

Chinese-origin rhesus macaques differ from those of
Indian origin in genetics, morphology, behaviour and
physiology, which has been reflected in the fact that Chinese
rhesus macaques have significantly longer survival times and
are less susceptible to infection by pathogenic SIVs/SHIVs than
their Indian counterparts. Further, steady state plasma viral load
(set point viremia) is significantly lower in Chinese macaques
and they strongly respond to viral antigens, with differing
patterns of cytokine secretion and expression of CCR5 in CD4+
T cells [17-23].

In terms of viral loads and disease progression,
cynomolgus macaques better reflect human HIV infection than
rhesus macaques. This obviously has its benefits and
disadvantages as well. Due to their smaller size than their
rhesus counterparts, cynomolgus macaques might be
advantageous from a therapeutic standpoint as lower doses will
be required on a body weight basis Further, the basic anatomy,
vaginal pH and microbial flora in the vagina and rectum are
similar to that of humans [24], thereby facilitating the
extrapolation of pre-clinical data, though anatomical features
such as a small vaginal vault make colposcopy and vaginal
biopsies difficult. Rhesus macaques also share similar aspects
of vaginal anatomy, particularly during certain phases of the
menstrual cycle, which have made these macaques a popular
choice for therapeutic approaches such as microbicides. Pigtail
macaques on the other hand, have higher viral loads and more
rapid progression to disease than HIV-infected humans. Pigtail
macaques also share similar aspects of vaginal and rectal flora
with that of humans. A significant advantage with using pigtail
macaques is their susceptibility to vaginal exposures of low
doses of SIV/SHIV, which resemble that of HIV-infected
patient semen viral load, obviating the need for high doses of
the virus or application of progestin-based hormones to thin
vaginal epithelium to facilitate viral entry [25].

The Mucosa is the Most Important Entry Point for
Establishment of Infection

To prevent HIV from gaining a foothold and to determine
the kinetics of drug delivery in target areas, it is imperative to
establish the paths of viral entry in the mucosa. The mucosal
barrier is a dynamic entity that is subject to assaults on a
constant basis and a healthy mucosal immune environment
inhibits pathogen entry. The vaginal and rectal mucosa are
affected by sex hormones and this is important for establishing
infections due to the direct effect of sex hormones on the
mucosal barrier function. As an example, Indian rhesus
macaques treated with a sex hormone (Depot Medroxy
Progesterone Acetate, DMPA) had higher levels of the gut
homing receptor, o437 on CD4+ T cells that are highly
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susceptible to SIV, particularly in the endocervix than in
macaques treated with estradiol (E2). However, MAdCAM-1,
the o4P7 ligand, was present in higher levels in the vaginal
fluids of control and estradiol-treated animals but absent in
those from DMPA-treated animals [26].

The female genital tract is thus unique because of its
ability to respond to hormones, immune factors, commensal
microbes and biochemical processes, all of which contribute to
increased rates of heterosexual male-to-female HIV
transmission when compared with female-to-male transmission.
Therefore, efficacy will be improved if vaccines are able to
target the female genital tract and induce local immunity.
Human papilloma virus (HPV) naturally infects cervicovaginal
keratinocytes and therefore might serve as efficient vectors for
HIV vaccines. Plasmid-forming pseudovirions that encapsidate
HPV capsid proteins are known to effectively deliver reporter
genes to the female genital tract and in addition to transgene
expression, also serve as adjuvants, engaging Toll-like
receptors and facilitating the activation and maturation of
antigen presenting cells. A common feature of vaccines that
facilitate expansion and recruitment of T cells is the unwanted
effect of recruiting susceptible CD4+ T cells and thereby
exacerbating viral replication. However, this was shown to be
not true when HPV pseudovirions were used for vaccination
against SIVmac251 challenge [27], with virus levels in mucosal
tissues inversely correlated with anti-envelope CD4 T cell
responses and CD8 T cells playing a role in virus control [28].

Macaque models allow stringent control of virus dose,
strain and tropism, timing, mucosal route and status of mucosal
tissues [29]. However, the complexity of human sexual
practices make it difficult to study sufficiently large numbers of
individuals [29], intrarectal or intravaginal routes of challenge
reflect human sexual practices only to a certain extent, even
though similar to human HIV infection, rhesus macaques
carried the lowest risk of SHIV infection, when challenged
orally, while the highest permeability was rectal followed by
vaginal routes [29]. Nevertheless, primate laboratories working
with the SIV model of macaques have not developed a
standardized protocol for mucosal inoculation. Standardization
of mucosal inoculation is important since it has been
demonstrated by genetic analyses that over 78% of typical
sexual transmissions originate from a single viral variant from
among the diverse quasi-species in the infected donor [30].
Several features such as virus dose, number and frequency of
inoculations, volume of inoculum, position of the animal during
exposure and duration of the exposure, amount of mucosa
exposed to the inoculum and virus dissemination sites as well
as draining lymphatic tissues involved in infection are all
important aspects to study viral transmission, pathology,
prevention and treatment [30]. Intravaginal SIV infection is
typically examined in rhesus macaque or pigtail macaque. The
vagina is a multi-layered stratified squamous epithelium whose
thickness is affected by the menstrual cycle, while the rectum is
composed of a single layer of columnar epithelium [31]. The
vagina therefore provides a more substantial physical barrier to
infection. Due to this, compared to the intravenous route,
10,000 fold more SIV particles are needed to infect 100% of
rhesus macaques intravaginally [32]. Compared to rhesus
macaques that are seasonal breeders, pigtail macaques breed
throughout the year and hence the latter might be preferred for
vaginal studies [24]. Pigtail macaques have regular menstrual
cycles and in addition to being more susceptible to vaginal
chlamydia and trichomonal infection than rhesus macaques,
they have higher states of immune activation and different
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frequencies of memory cells than rhesus macaques, which may
lead to an accelerated progression to SIV-AIDS [33].

Vaccine-induced delayed SIVmac251 acquisition in
females, but not male rhesus macaques, was attributed to better
quality mucosal antibodies that afford better protection
compared to males [34]. In a bid to refine current inoculation
protocols and to determine where virus entry occurs and how
infection disseminates from the mucosal entry sites, dual
reporter SIV vector [35] and mucosal inoculations of dyes
followed by magnetic resonance imaging were carried out
recently [36]. Atraumatic application of one ml of viral
inoculum for intrarectal challenges and two ml volume for
intravaginal challenges was insufficient for reaching the distal
descending colon, and could model rectal exposure in only 50%
of the animals. A three ml intrarectal challenge, the volume of a
typical macaque ejaculate, would more likely increase the
consistency of contact between the mucosa and the inoculum.
Nevertheless, other factors such as amount and consistency of
feces are variables that can affect this estimation. For vaginal
exposure, a two ml volume in sexually mature, nulliparous
Indian rhesus macaques resulted in the inoculum contacting the
entire vaginal vault but there was no penetration into the cervix.
Using a different approach, a dual reporter system containing a
non-replicating SIV-based vector preferentially infected the
squamous mucosal epithelium and ectocervical barriers of the
vaginal vault, along with ovaries and local draining lymph
nodes only 48 hours after inoculation with a high dose of virus
[35].

Another less frequently described aspect of SIV
pathogenesis is the use of SIV/SHIV cell-free viral particles to
evaluate preventive approaches. It must be taken into account
that infectious HIV is primarily associated with semen, which
comprises seminal plasma, spermatozoan cells, germ cells,
leukocytes, epithelial cells and commensal microflora; plasma
contains inflammatory factors, cytokines, peptides and
antibodies. Macaque semen similarly contains leukocytes and
SIV host cells. Studies have shown efficient transmission with
cell-associated SIV in vaginally exposed progesterone-treated
cynomolgus macaques [37] as well as intestinal mucosa to
repeated intrarectal exposure to low amounts of SIV-infected
peripheral blood mononuclear cells (PBMCs) [38]. This
initiated an immune response in the receiver that may confer a
protection against infection by the cell-associated virus, thereby
resulting in  allo-immunization against the  major
histocompatibility complex (MHC) of the donor, and anti-MHC
antibodies generated by vaccines have significant impact on the
outcome of SIV/HIV vaccine challenge in macaques [39]. In
addition, viral infectivity in the semen is affected by its pH,
which in the macaque is slightly basic, ranging from 7 to 9,
similar to that of the average human semen (pH 7.7). Compared
to semen, the vaginal environment in humans is acidic with a
pH ranging from 4 to 6, which can therefore inactivate cell-free
HIV. However, pH of the vaginal environment in macaques
(rhesus, cynomolgus macaque and pigtails) ranges from 6 to 8,
which increases infectivity of cell-free SIV/SHIV in the
macaque model [39]. Therefore, factors that regulate the
complex microenvironment at portals of HIV entry need to be
better understood for testing vaccine efficacy.

Host Immunogenetics

Anti-Retroviral Restriction Factors and Protection in
Macaques

The genetic background of the host species, or even
subspecies, is important for the purposes of grouping macaques
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for vaccination trials where host immunogenetics profoundly
influence immunological responses and virological outcomes
[3]. Foremost among these genetic players are the host anti-
retroviral restriction factors such as APOBEC3, TRIM5a,
SAMHD1 and MHC alleles that influence the progress of
disease in macaques infected with SIV. HIV can efficiently
enter the cells of old world monkeys but encounters a block
before reverse transcription, mediated by TRIMb5a, a
component of cytoplasmic bodies [40]. TRIM5a targets the
capsid protein of incoming lentiviral particles and inhibits
subsequent steps of the replication cycle, including inhibition of
reverse transcription immediately after viral entry into the cell
and therefore is an important mediator of anti-retroviral innate
immunity in mammals and confers resistance to HIV-1
infection in old world monkeys [41]. The susceptibility of
pigtail macaques to HIV could partly be due to a dysfunctional
TRIM50, [42]. The macaque TRIM5a gene displays
considerable polymorphism in one of the domains leading to its
classification into three classes giving rise to six different
genotypes, which have been to shown to display divergent anti-
retroviral restriction characteristics. The cynomolgus macaques
are positive for TRIM5Q, TRIM5CypA and TRIM5TFP
genotypes, while the pigtail macaques are homozygous for
TRIM5CypA. Rhesus macaques of Burmese, Chinese and
Indian origin possess TRIMS5 alleles, but the TRIM5CypA
variant is absent in Chinese rhesus macaques, thereby making
them less susceptible to SIV infection than the Indian rhesus
macaques. Most rhesus macaques are homozygous or
heterozygous for the least permissive TRIMSTFP allele.
Interestingly, there is no significant effect of TRIM5
polymorphism on the replication of SIVmac251 in Chinese
rhesus macaques or SIVmac32H/ixc in Indian rhesus macaques,
suggesting that the effects of TRIM5 polymorphism on the
evolution of SIV in macaques may be cohort and/or SIV strain
specific [43]. Since many host genes dictate immunological
responses to vaccines, the role played by the above mentioned
restriction factors such as SAMHD1, TRIM5oa and MHC
alleles that confer protection have to be factored in while
designing studies.

MHC Alleles and Protection in Macaques

As CD8+ T cells are an integral component of the immune
response against SIV, it is necessary to examine MHC
expression in macaques so that CD8+ T cell responses can be
monitored during disease progression. The repertoire of MHC
alleles and the level of expression of each of these alleles is a
critical aspect of an immune response to SIV and the fact that
MHC expression varies among distinct leukocyte subsets
suggests that SIV tropism can have an impact on the immune
response [44]. Characterization of MHC class | alleles allows
us to identify the association of cytotoxic T lymphocytes (CTL)
response to an immunodominant epitope derived from the SIV
Gag region, which may ultimately influence the time of onset of
disease in SIV-infected macaques. MHC alleles such as Mane-
A1*084:01 (previously named Mane-A*10) control SIV
infection by CD8+ T cells [45] and immune escape mutations
identified within CTL epitopes restricted by Mane-A1*084 are
useful for designing vaccines for use in in pigtail macaques
[46]. Indian rhesus macaques are known to have several MHC
alleles that confer protection. Expression of Mamu-A1*001 is
associated with significantly delayed disease progression in
SIV/SHIV infections while Mamu-B*017, Mamu-A*1303 and
Mamu-B*008 alleles are associated with favourable disease and
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control of SIV replication [47]. In the case of cynomolgus
macaques, MHC alleles can affect the outcome of vaccine
studies similar to that observed in rhesus macaques.
Comparison of the MHC region between primates and non-
human primates shows that the cynomolgus sequence varied
compared to rhesus macaque, human and chimpanzee
sequences by 0.48, 4.15 and 4.10% respectively [48], which
implies considerable species-specific differences that vaccine
design must deal with. MHC alleles in cynomolgus macaques
have been described in sufficient detail elsewhere [13].

MHC Alleles and Protection in Humans

MHC class | alleles such as human HLA-B*027 and HLA-
B*057 are associated with slow progression of HIV-1 disease
[49] while HLA-B*22, HLA-B*35, and HLA-B*44 in humans
are associated with shorter survival time [50]. With respect to
MHC class Il molecules, there is evidence in the RV144 trial
for envelope [51]-specific IgA antibodies to be associated with
increased risk of HIV acquisition specifically in individuals
with DQB1*06. Higher IgG antibody responses to HIV
envelope amino acid positions 120 - 204 were associated with
decreased risk of acquisition and increased vaccine efficacy
only in the presence of DPB1*13. Overall, the underlying
genetic findings indicate that HLA class Il modulated the
quantity, quality, and efficacy of antibody responses in the
RV144 trial [52]. Unlike SIV vaccine studies in cynomolgus
macaques where MHC/TRIM typing was either not carried out
or not reported [2], most studies in rhesus macaques reported
these data. It is essential for macaque studies to conduct MHC
typing of the animals such that influence of protective alleles in
the vaccinated or treated groups could be ruled out as a possible
mechanism for the outcome of the study.

Psychosocial Features of Animal Husbandry

An often-neglected aspect of animal housing facilities is
the suppression of vaccine efficacy due to neuropsychoimmune
effects faced by macaques in a social environment. During
competitive encounters, dominance rank is established among
macaques, leading to some individuals yielding to others in the
group. Low dominance rank in macaque colonies can lead to
chronic stress, immune compromise and reproductive
dysregulation. Particularly in female rhesus macaques, this can
cause alterations in glucocorticoid and sex steroid hormone
levels [53], in addition to disruption in serotonergic and
dopaminergic signalling [54], and very importantly, in the
context of SIV infection and immune response, changes in
lymphocyte count and proliferation [55].

Evaluation of Vaccine Efficacy

SIV vaccine efficacy depends on induction of robust and
long-lasting antibodies against envelope glycoprotein with
potent neutralizing and effector functions to prevent acquisition
of infection and induction of cytolytic T cell responses against
Gag for controlling viral replication [34]. Frequently, due to
lack of systematic vaccination protocols and uniformity in the
type of challenge strains, viral doses and macaque species used,
there are difficulties in evaluation of vaccine efficacy and
identification of correlates of protection associated with
vaccination against SIV. On examination of the efficacy of
various vaccine vectors in animal trials, most rhesus macaques
showed at least 1-2 log lower viremia, even though animals
protected were not high (Table 1). A vaccine regimen
comparing cellular responses to ALVAC/Env, RepAd/Env,
DNA & Env, DNA and Peptide/MVA/ in rhesus macaques
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showed that all vaccine regimes, particularly DNA vaccines
(highest frequency of 7.5%), induced antigen-specific CD8+ T
cells in the vagina. While only one of three animals was
positive with ALVAC, cellular responses were not induced with
peptides. IgA and 1gG were detected in the mucosa of all
vaccines, though IgG was higher than IgA in animals with
antigen-specific CD8+ T cell response [56].

With very few exceptions [57], there are no studies where
protection has exceeded 50% in SIV-infected rhesus macaques.
High seropositivity to adenoviral vectors in the general
population might be the greatest challenge in vaccine
development as noted with the setbacks associated with
replication defective Ad5 vectors in HIV vaccine clinical trials
(HVTN505 and STEP). Of many adenoviruses that have been
tested, 50% protection was obtained against pathogenic
challenge [58], but it seems that Ad26 strain offered the best
protection when combined with a robust prime boost strategy
[56]. Ad5, Ad6 and Ad7 did not offer significant protection
(Table 1). More recently, replicating Ad5hr-recombinants
encoding SIV-Gag and/or SIV-nef in addition to SIVenv/rev,
boosted with SIVgp120 or polypeptide of CD4 binding site of
SIV env, showed 39% of animals protected against intrarectal
challenge of SIVmac251 [59]. A similar level of protection
against SIVmac251 was afforded by virus-like particles (VLPs)
in rhesus macaques [60]. This suggests that a strong immune
response is being generated, but with adenoviruses, it seems
that the prime boost combination might be working in its favour
compared to other vectors that were employed. This was clearly
not needed when RnCMV was used, owing to the unique nature
of the cytomegaloviruses that exhibit persistent and latent
infection, mediating their effects through T effector memory
responses [61]. Most studies have used the Indian rhesus
macaque though at least one study using Chinese origin rhesus
macaques showed lower viremia in immunized animals in the
context of adenoviral vectors [62].

SIV Strains Used in Macaque Challenge Experiments

Once the vaccine vector has been validated through in vitro
studies and macaque model has been identified, the choice of
challenge virus gains paramount importance. Pre-clinical
macaque vaccine trials use either heterologous or homologous
virus challenge, SIVmac251 and SIVmac239 being the
principal strains used. SIVmac251 is a swarm whereas
SIVmac239 is a clone and this needs to be considered for
standardization of vaccine trials. SHIV SF162 and related
strains are used in SHIV chimera-based vaccines (Table 1).

SIVmac Strains

SIVmac viruses have only ~55% sequence homology with
that of HIV-1 whereas they have ~75% sequence homology
with that of HIV-2 and a 54-80% sequence homology with
SHIVs. The SIVmac251 virus and SIVSmE660 were isolated
from rhesus macaques naturally infected by SIVsm, and
SIVmac239 is a derivative of SIVmac251 [63]. Whereas some
such as SIVmac239 is highly pathogenic, others have been
attenuated due to genetic deletions. SIVmac251-32H-C8 lacks
12 bp in the nef gene, while SIVmac251-J5 displays limited
pathogenicity [63]. Most challenge experiments in macaques
have been performed using SIVmac251, which is a swarm virus
or the pathogenic clone SIVmac239, as well as SIVSmEG660, the
latter showing low viral loads in the chronic phase, but
nevertheless is a swam virus showing considerable variability
between animals [63].
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SIV-SHIV Chimeras

Among chimeric viruses, SHIV89.6 with HIV-1 env from
patient isolate 89.6 and SIVmac239 has been used extensively
for vaccine studies in rhesus and cynomolgus macaques [64,
65]. Highly pathogenic SHIVs such as SHIV-89.6P chimeric
virus cause a profound depletion of circulating CD4+ T cells
within 2-3 weeks of infection and development of AIDS-like
disease within a year [66]. SHIV89.6P are either X4-or dual
tropic and irreversibly destroy naive and memory CD4+ T cells
rapidly. Even though the HIV-1 env included in SHIV-89.6P
was derived from a clone that used both CCR5 and CXCR4 co-
receptors for entry into macaque CD4+ T cells, sequential
passage in macaques has selected for a SHIV-89.6P clone that
is now deemed a pure X4 virus [67]. A relative drawback of
SHIVs is the fact that their disease course is not typical of
human AIDS in that infected animals become rapidly
immunosuppressed immediately with dramatic loss of CD4+
cells and essentially “crash and burn” with almost always gut-
related pathology and wasting within the first few weeks.
SHIV89.6KBY9, a strain derived from Indian rhesus macaque,
showed improved pathogenicity when passaged in cynomolgus
macaques (resulting in SHIV89.6¢cy243) due to an 8-amino acid
change at the junction between the HIV-1 and SIVmacgp4l
cytoplasmic tail gene sequence [66].

As there is an emerging shift in immune correlates of
protection from cell-mediated immune response to that of non-
neutralizing antibodies to control HIV infection based on the
results of the RV144 trial [68], there is a need to develop
SHIVs that recapitulate the mechanisms of natural infection and
antibody action in macaques. Tier 1 HIV strains are highly
neutralization sensitive and SHIVSF162P4 is an example of a
chimeric strain, whereas Tier 2 strains, such as R5-tropic
SHIVSF162P3, are less sensitive to neutralization, and in non-
human primate models both are essential for vaccine discovery.
Unless provided at high doses, both these strains are rapidly
cleared, but not newer strains such as SHIV-1157 [69].

Challenge Routes

Pigtail macaques inoculated intrarectally  with
SIVmneE11S clone, showed dramatic increases in total and
SIV-specific IgA levels in rectal secretions compared to plasma
and non-rectal mucosal samples [70]. A comprehensive study
examining different routes of exposure in rhesus and
cynomolgus macaques showed that the early plasma viral loads
did not differ when administered SIVmac251/32H(1XC),
SIVmac251, SIVsmm-3, SHIV89.6P (passaged in rhesus and
cynomolgus macaques) orally, intrarectally, intravaginally or
intravenous routes, though steady state SIV plasma viral RNA
was lower in cynomolgus macaques compared with rhesus
macaques [71]. Most studies comparing different routes of
vaccine delivery were performed in rhesus macaques,
particularly evaluating the bio-distribution and persistence of
replication-competent adenovirus vectors expressing SIV
transgenes. It is interesting to note that unlike replication-
defective vectors that maintain localized anatomic distribution,
replication-competent adenovirus vectors are distributed
throughout the macaque regardless of immunization route [72].
However, the same group showed that replication-competent
Ad5-SIV induced mucosal IgA responses in  mucosal
(sublingual, rectal, vaginal, or nasal) tissues but the vaginal
immunization route was found to generate the highest SIV-
specific vaginal T-cell responses [73]. Similarly, live attenuated
poxvirus vaccine (NYVAC-SIV) administered intranasally,
intramuscularly, or intrarectally induced CD8+ T cells specific
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to the antigen (SIVgpe) in the mucosal tissues of immunized
macaques [74]. On the other hand, it has also been noted that
cutaneous or intramuscular immunization generates antigen-
specific cells that may not migrate to mucosal sites as shown in
macaques where mucosal immunization offered better
protection than the subcutaneous route following intrarectal
challenge with a SHIV strain [75]. Penile immersion in 109
SIVmac251 resulted in higher SIV RNA levels in the genital
lymph nodes where virus is initially amplified [76].

Challenge Doses Used in Macaques

HIV is a weak virus with productive infection being a rare
event since a minimum of 500 heterosexual contacts are needed
to cause one productive infection [77]. HIV/SIV infection is
established when a single virus spreads systemically after
replication in mucosal tissues. Successful transmission of HIV
via a mucosal route is dependent on multiple factors, including
the viral dose present in the inoculating fluid (semen, vaginal
fluid, breast milk), the integrity of the mucosa, and the number
of target cells at the mucosa site. The dose of virus needed to
establish infection is crucial to elicit an immune response. Since
a majority of infections is initiated by a small number of
transmitted viral variants, how the disease course is affected by
virus dose and the number of variants in that dose becomes
important. Experimental protocols in macaques generally
follow one high dose of a SIV clone or a swarm to achieve
infection, but this does not recapitulate sexual HIV
transmission. High dose infection has the unwanted effect of
masking protective effects of an otherwise efficacious vaccine
[78]. On the other hand, recent advances in experimental
protocols have resulted in a number of studies adopting two
low-dose challenge of SIVmac251that imitates natural HIV
infection that offered some protection in contrast to a high-dose
group in rhesus macaques [78]. In another study, live hyper-
attenuated SIV viruses, induced a robust and rapid recall
response following multi low-dose SIVmac239 infection in
cynomolgus macaques but vaccination failed to induce
sterilizing immunity, even though viral loads were dramatically
reduced [79]. Vaccines against SIV can provide vaccination-
induced immune correlates but multiple low-dose challenges
can result in evolving host responses that affect the protective
outcome. This is exemplified by a 73% reduction in risk of
infection in macaques challenged rectally with SIVmac251,
which is attributed to innate antiviral signalling induced by the
first challenge followed by vaccine boost-elicited antibody
response [80]. Higher diversity of SIV variants was seen in
macaques challenged orally with high dose SIV compared to a
low-dose challenge, which reflects natural infection by HIV.
Interventions applied during the eclipse phase, which is the
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delay in viral and innate immune responses, is more likely to be
successful when oral low-dose SIV inoculations are part of the
vaccine trial [81].

However, the low-dose approach is also fraught with
problems such as the difficulty in identifying vaccine-induced
immune responses from immune responses stemming from
repeated exposures to SIV. Also, the timing of infection and
tissue sampling procedures that require identification of the
precise sequence of challenges that lead to infection will be
hard to identify. Challenging animals with a low dose of SIV
several times in a short duration (rapid, repeated low-dose) in
cynomolgus macaques allow examination of early acute events
while using a low-dose challenge. Moreover, because of the
nature of the protocol, there is a clearly defined duration
between intervention and challenge allowing for studies related
to longitudinal efficacy of microbicidal treatments and vaccine
trials [82]. In the presence of neutralizing or blocking
antibodies, even high doses of highly pathogenic SIVmac239
strain can be controlled [83]. This suggests that a highly
efficacious vaccine that induces both cellular and humoral
immunity can overcome some of the barriers induced by the
viral strain, dose, macaque strain and other variables in a
vaccine trial.

CONCLUSION

Despite a ban on export of Indian rhesus macaques from
India, primate-breeding facilities in North America have
ensured a steady and consistent supply of this species for
biomedical research purposes. Therefore, the use and
development of other macaque species such as cynomolgus and
pigtail macaques, as HIV models is dependent on the tropism
and host specificity of SIV strains and of candidate vaccine
vectors. Genomic characterization of animals and their
allocation in vaccine trials are a necessity when elucidating the
protective mechanisms attributed to vaccines in macaques. The
ease of genome sequencing in terms of cost and technology has
further benefited the macaque biomedical research community
in terms of MHC allele databases of various macaques enabling
identification of those that confer protection against SIV
infection. The species-specific nature of vaccine vectors should
complement the immunogenetics and anatomical features of the
macaque model being used for that study. Thus, vaccine studies
are influenced by host genes as well as immunological
correlates of protection specific to vectors employed. Lastly,
care must be taken to ensure that animals are well-characterized
and obtained from reputed sources.
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