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A R T I C L E I N F O                   A B S T R A C T 

The amount of multidrug-resistant (MDR) strains, especially methicillin-resistant 

Staphylococcus aureus and Staphylococcus epidermidis, as frequent causes of nosocomial 

and device-related infections have increased. Biofilm formation is an essential requisite in 

staphylococcal pathogenicity. It is considered as a bacterial surveillance, antibiotic 

resistance, and transition of antibiotic resistance genes factor.  Therefore, biofilm-related 

macromolecules have been suggested as putative new vaccine candidates to combat 

staphylococcal infections. Based on the MEDLINE and Google scholar databases, some 

Staphylococci macromolecules are involved in the biofilm formation process and have 

been reviewed as putative vaccines. Based on experiments, common staphylococcus 

antigens could prevent the progress of the caused diseases by this genus. Moreover, 

considering related stages in biofilm formation, a multivalent putative vaccine (protein and 

polysaccharide) candidate could be enhancing the eradication chance of aforementioned 

bacterial families. 
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INTRODUCTION 

Staphylococcaceae family is non-motile, non-spore-

forming, catalase-negative bacteria that grow on most 

bacteriological culture media at both anaerobic and aerobic 

conditions. Based on the ability of bacteria to produce 

coagulase, a protein enzyme that facilitates the conversion of 

fibrinogen to fibrin, staphylococci are divided into coagulase-

positive and –negative Staphylococcus (CoPS and CoNS, 

respectively [1]. Unlike the CoNS, the CoPS often have golden 

discoid colonies surrounded by a zone of β-hemolysin. Because 

of increasing cases of antibiotic-resistant patterns in the strains 

of staphylococci, there is a demand for an effective 

prophylactic vaccine against these bacteria. Staphylococcaceae 

family is considered as the etiological agents of several mild 

and intense disorders, such as sepsis and endocarditis [1]. Based 

on the preclinical models, various antigens can prevent the 

spread of staphylococcal diseases either alone or in a 

combination with other antigens. The development of a 

protective vaccine to cease the spread of sepsis is one of the 

most challenging issues in pharmacology research [1]. 

S. aureus is a primary pathogen causing a wide range of 

diseases, such as mild skin and soft tissue infections, 

bacteremia, endocarditis, pneumonia, metastatic infections, 

sepsis and toxic shock syndrome in hospitalized patients. The 

reason for this wide range of symptoms might be related to 

undiscovered factors that make the host susceptible to 

colonization [2]. The contamination of medical devices with S. 

aureus inserted into the patient's body might be remarkably 

dependent on the patients’ health. There are similarities in the 

developed infections caused by staphylococci biofilm and 

usually highly intensive care is needed in such cases. Infections 

caused by S. epidermidis are more difficult to treat by antibiotic 

therapy in comparison with S. aureus [3]. Moreover, medical 

devices act as a spreading source of several bacterial infections 

to different parts of the human body. Over the past decades, 

there has been an increase in the nosocomial infections caused 

by staphylococcus species, especially S. aureus [4, 5]. Since the 

1960s, the first methicillin-resistant S. aureus (MRSA) strains 

were detected which have remained a major global challenge 

[6]. Thus from the molecular pathogenesis perspective, it is 

essential to know the relevant factors involved in such biofilm 

formations and to discover their physiological status within the 

body. 

S. epidermidis is an inhabitant of human skin. For a long 

time, it was only considered as a contaminant when cultured 

from blood or tissue samples [7, 8]. Since S. epidermidis is a 

part of normal skin flora, it probably initiates contamination 

after implantation of a medical device. In recent years, S. 

epidermidis has been accepted as a leading cause of nosocomial 
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bloodstream infections, especially in patients with prosthetic 

medical devices [9, 8]. S. epidermidis is an opportunistic 

pathogen, principally known as the cause of infection in 

immunocompromised patients [10]. Biofilm formation of S. 

epidermidis is a critical factor in the pathogenesis because it 

can be colonized on medical devices which makes it resistant to 

multiple antibiotics and host defenses. There is an essential 

need to remove or replace the biofilm contaminated medical 

implants. Moreover, studies are needed to be done to provide 

new and effective vaccines against staphylococcal biofilm 

formation [11].  

CoNS which inhabit on a person's skin include S. hominis, 

S. epidermidis, saprophyticus, S. warneri, S. cohnii, S. 

saccharolyticus, S. haemolyticus, S. capitis and S. lugdenensis. 

They are normally harmless to their host. Most staphylococci 

including S. epidermidis in the cases that the skin is injured 

might be pathogenic. CoNS colonization seems to be relevant 

to the specific sites of the infection and its abundance. For 

instance, S. saprophyticus which is a common inhabitant of 

inguinal and perineal areas, is an etiological agent of urinary 

tract infections [12]. 

Biofilm formation and consistency of host immune evasion 

of S. epidermidis and S. aureus make them the main concern of 

the nosocomial infections in hospitals [13, 14]. Despite being a 

part of human flora, the ability to adhere to the medical device 

surfaces and developing multilayered structures, known as 

―biofilm‖, makes them problematic [15]. Biofilm is defined as a 

community of cells encased within an exopolymeric matrix and 

attached to a surface. It has been proved that biofilms are 

resistant to antimicrobial therapy and host defense [13].  

Many studies have demonstrated that biofilm developed in a 2-

step physiologically process; primary adherence of the cells to 

the site and the maturation of the biofilm. Phase-specific factors 

are needed for each of these steps. In general, there is no 

agreement about different steps of biofilm formation in 

staphylococci. We review here three main stages, namely 

attachment, maturation/aggregation and detachment [15]. 

 

1- Attachment 
The first stage of biofilm formation is attachment. That is, 

bacteria attach to their host cell membrane by bacterial 

appendages which are cell-surface components that facilitate 

adhesion to other cells. Matrix proteins play a critical role in 

both adherence and the evasion of the host immune system. 

This makes matrix proteins as important virulence factors in 

Staphylococci. The Gram-positive bacterial proteins are divided 

into two families; microbial surface components, recognizing 

adhesive matrix molecules (MSCRAMMs), and serine-rich 

repeat proteins (SRRPs) [16]. 

One of the most important factors of colonization is the 

interaction between the matrix proteins of the host and 

MSCRAMMS. A set of MSCRAMMs with a capacity to link to 

protein matrix in humans, such as fibrinogen, fibronectin, and 

several matrix proteins are synthesized by S. epidermidis and S. 

aureus [17]. The common structure of MSCRAMMs consists of 

an exposed ligand-binding domain, a membrane-spanning 

domain (mostly with a repeated structure) and a domain 

responsible for the covalent and non-covalent attachment to the 

bacterial surface. Sortases are a family of prokaryotic enzymes 

that catalyze the covalent attachment of the MSCRAMMS 

LPXTG (Leu-Pro-any-Thr-Gly) motif, which is split between 

the threonine and glycine residue [18]. Sortases anchor up to 21 

and 12 different LPXTG proteins to the cell wall in S. aureus 

and S. epidermidis, respectively [19, 20].  

MSCRAMMs can mediate indirect binding to host¬ 

plasma-covered surfaces with fibronectin (Fn), collagen (Cn) 

and fibrinogen (Fg) as matrix proteins. Cell surfaces are 

covered with a different macromolecules, such as proteins 

including Embp, GehD, SdrG, SdrF, AtlE and Aae autolysins as 

well as polysaccharides (i.e. cell wall teichoic acid (TA) and 

polysaccharide intercellular adhesion; PIA) and matrix-binding 

determinants [21, 22]. Serine-aspartate repeat (Sdr) protein 

family members are categorized into two distinct species; 

however, their function is the same [23]. Both species use 

autolysin AaP proteins to form their noncovalent bonds, 

maintaining the three-dimensional structures of the 

macromolecules [24]. Autolysins are the most frequent proteins 

on staphylococcal cell surfaces, non-covalently linked to 

teichoic acid [25]. These enzymes have a considerable role in 

the rate of cell wall- turnover and are critically important for the 

bacterial attachment. Moreover, they facilitate the attachment 

on plastic surfaces and harbor binding sites for human matrix 

proteins [26]. The GehD lipase plays a more important catalytic 

role than the autolysins and it has an additional adhesive 

function [27]. Given attachment is the first step of biofilm 

formation, any of the surface-located macromolecules could be 

considered as a putative vaccine candidate [7]. 

 

2- Maturation/Aggregation 
The maturation phase has two main characteristics in the 

biofilm formation; A) intercellular aggregation by a wide range 

of molecules including sticky macromolecules; B) formation of 

the three-dimensional structure of mature biofilm.  

 

Adhesive Forces 

Poly-N-acetylglucosamine (PNAG) is the most important 

PIA because its chemical composition is the most responsible 

molecule for adhesion in the Staphylococcal aggregation [28]. 

The extracellular matrix of staphylococcal biofilm is often 

called ―slime‖ which is consisted of several polymers including 

PIA, proteins and teichoic acids. The core polymer of PIA has a 

β‐1, 6‐linked N‐acetylglucosamine structure [29]. Homologs of 

PIA have been recently found in different biofilms of 

pathogens, which suggest its broad function in biofilm 

formation and biofilm-associated infections. PIA biosynthesis 

depends on the expression of the icaADBC operon. The 

expression of icaADBC is regulated by an array of 

environmental factors and regulatory proteins [30, 31]. The 

Intercellular Adhesion (ica) locus contains an N-

acetylglucosamine (GlcNAc), a PIA deacetylase (icaB), a 

putative PIA exporter (icaC) and a regulatory gene (icaR) [32, 

33]. Some strains without the ica genes have been isolated from 

biofilm-associated infection which suggests that PIA is not 

generally essential for biofilm formation in staphylococci [34, 

35]. The proteinaceous intercellular adhesion is involved in cell 

accumulation of those strains that do not produce PIA polymer 

[7]. Accumulation-associated protein (Aap), is the most 

important protein involved in PIA-independent biofilm 

formation and contains various domains including domain A, 

linked to corneocytes, making it of great importance for skin 

colonization [36]. To induce biofilm formation, Aap interacts 

with PIA, and then a 220 kDa Aap protein needs to be 

proteolytically broken down to a smaller 140 kDa form [37, 

38]. The function of the staphylococcal surface proteins, SSP-1 

and SSP-2, might be similar to Aap role in terms of biofilm 

production [39]. S. epidermidis surface (Ses) proteins have been 

proven to be formed by SSPs; therefore, providing cell-cell 

adhesion over longer distances which explains how these 

 [
 D

O
I:

 1
0.

29
25

2/
va

cr
es

.6
.2

.9
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 v
ac

re
s.

pa
st

eu
r.

ac
.ir

 o
n 

20
25

-0
4-

04
 ]

 

                               2 / 5

http://dx.doi.org/10.29252/vacres.6.2.9
http://vacres.pasteur.ac.ir/article-1-174-en.html


 Mirzaei Bahman et al                                                                    Putative Targets as Vaccine Candidates with Respect to Biofilm Formation…                                                     

   

                                                                                      11  

2019 Vol. 6 No. 2 

proteins contribute to the aggregation step of the biofilm 

development. 

Considering the PIA-independent biofilm formation, 

other involved proteins are biofilm-associated proteins (Bap) 

and biofilm-associated homolog proteins (Bhp) [7]. Bap family 

might be essential in biofilm production because of the 

presence of Bap homologs in other bacteria and the vital role of 

this large protein in S. epidermidis derived from mastitis [40, 

41]. Recent studies have identified that extracellular matrix 

binding protein (Embp) and fibronectin-binding MSCRAMM 

facilitate biofilm formation as a proteinaceous intercellular 

adhessive [42]. Many Gram-positive bacteria have TA 

polymers, such as S. aureus and S. epidermidis. There are two 

sorts of TA, namely cell wall-linked TA (WTA) and 

lipoteichoic acid (LTA) which is linked to the cell wall by a 

lipid anchor [43, 44]. TA has a polyanionic character and has 

been described as a stabilizing factor [7]. D-alanylation of TA 

in S. aureus is a vital factor in biofilm formation [45]. 

Moreover, a probable role for TA in S. epidermidis virulence 

could be its attachment to the fibronectin-coated surfaces [46]. 

 

Biofilm Structure Disrupting Force 

When the biofilm matures, a specific 3D structure is 

formed through the fluid-filled channels [47]. Based on the 

findings, modulin proteins as quorum-sensing (QS) mediators 

play a key role in the mechanisms leading to the channel 

formation and biofilm structures [7]. Phenol-soluble modulins 

(PSMs) are a class of surfactant-like peptides, mainly assigned 

as pro-inflammatory molecules in S. epidermidis. They are 

subdivided by an amphipathic alpha-helical structure into two 

classes: the shorter type is called α type, which has a length of 

approximately 20 amino acids (PSMα, γ, δ, and ε) and the 

longer type that is called β type with a length of approximately 

40 amino acids (PSMβs) [7]. Shifting β-type and PSMs in PSM 

expression have been observed when biofilm constructed. In 

other hand, the expression of PSMs likely constitutes a key 

factor contributing to the switch between an aggressive and a 

silent form of S. epidermidis physiology during the infection. 

Detachment of biofilms, dissemination of pathogen and the 

attraction of immune cells are related to PSMs expression.  

Whereas suppression of the production of PSMs in the biofilm 

stage enables the cells to stick together and to evade the host 

immune defense. [48]. The development of biofilm in S. 

epidermidis is directly related to the down- and up-regulation of 

PSM expression [7]. At a lower concentration, the PSMβs 

might form ―holes‖ in an early biofilm and lead to the 

formation of spaces and channels in the biofilm structures [7, 

49].  

 

3- Detachment 
Disperse of bacteria to connect to another colonization site 

during the establishment of mature biofilm in staphylococci is 

known as detachment. It may happen by either detachment of 

single cells or larger cell aggregates. Cell dispersal not only 

leads to embolism, sepsis and hospital-acquired pneumonia it 

also leads to biofilm formation at other sites [50]. In 

staphylococci, agr QS system controls factors that will change 

the biofilm surface when the rate of associated factors is 

relatively high [51]. The increase of PSMβ leads to cluster 

detachment of the biofilm. As long as the biofilm matures, it 

results in a systemic spread of its fragments [49]. It has also 

been suggested that PSMγ (identical to δ-toxin) acts as a cell-

cell disruptive factor [52]. 

The Biofilm-Based Putative Vaccine Candidates 

Biofilm formation is a clinical challenge. It increases the 

antibiotic resistance patterns and bacterial evasion from the host 

defense [14]. Biofilm formation has great importance in a wide 

range of infections and has been accepted as a bacterial mode of 

growth. According to the National Institutes of Health (NIH), 

approximately 80% of human biofilm-related infections are 

common [13]. Medical device-associated infections caused by 

biofilm formation of S. epidermidis and S. aureus have led to 

challenging and complicated medical processes. The emergence 

of antibiotic-resistant strains of staphylococci, mainly MRSA, 

emphasizes this matter [19].  

So far, several bacterial surface-located components 

including serine-aspartate repeat protein G (SdrG), serine-

aspartate repeat-protein F (sdrF), clumping factor A (ClfA), 

GehD lipase and extracellular matrix-binding protein (Embp) 

which are engaged in the initial phase of biofilm production as 

well as autolysin E (AtlE) have been evaluated as putative 

staphylococcal vaccine candidates [53- 56]. Furthermore, the 

MSCRAMMs/surface proteins have also been considered in 

this regard [53- 56].  

In conclusion, vaccine development against staphylococcal 

infections is still in its infancy. As it was previously mentioned, 

biofilm has resistance against antibiotics and could escape from 

the host immune system. Recently, several studies have been 

accomplished based on the selection of antigens to eradicate the 

biofilm-related infections. General immunization along with 

using short-term medical implants such as venous catheters 

seems to be more cost-efficient than removing and replacing the 

contaminated devices. For permanent medical device users, 

removing the contaminated device might be risky because of 

the long hospitalization time and increase in healthcare costs. 

Thus, justifiable and cost-effective methods must be 

considered. 
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Fig. 3.  Amplicon expression profile.  Samples of uninduced (lane 1), 
IPTG-induced (lane 2), D-PBS-soluble (lane 3), and Triton-soluble 

(lane 4) bacterial molecules were separated by SDS-PAGE, and stained 
with Coomassie Blue. On left (lane M) prestained protein molecular 

mass markers of 20.486, 29.059, 36.811, 50.443, 84.174 and 105.203 

kDa (Bio-Rad).  The arrow points to the induced mature ShCL 
product, of around 30 kDa, present in D-PBS-soluble and Triton-

soluble supernatants. 
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