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A R T I C L E I N F O              A B S T R A C T 

Introduction: Pseudomonas aeruginosa (PA) is an opportunistic mucosal human pathogen 

responsible for a wide range of acute and chronic infections. PA releases outer membrane 

vesicles (OMVs) in all situations and environments. OMVs are bilayered proteolipids 

ranging in diameter from 50 to 250 nm. Recent studies have demonstrated that OMVs are 

related to PA pathogenesis. According to strain-dependent components of OMV, in this 

study, we aimed at identifying significant physicochemical differences among OMVs from 

lab strain ATCC 17933, an antibiotic-susceptible and an antibiotic-resistant PA clinical 

strains. Methods: OMVs of the three strains were purified using differential centrifugation 

with deoxycholate and EDTA. Chemical analyses were assessed using nano-drop, SDS-

PAGE and the limulus amebocyte lysate (LAL) test. Moreover, electron microscopy was 

performed to verify the stability and totality of the extracted OMVs. Results: The 

nanodrop method and the LAL test showed that total protein and endotoxin concentrations 

were significantly different among all the 3 mentioned strains. In addition, the quality 

control of OMVs illustrated that the lab and the antibiotic-susceptible strains were 

approximately similar in terms of the vesicle yield and size; however they differed in 

protein contents. Moreover, OMVs generated from the resistant strain had a higher density, 

smaller size and sharper protein bands as observed by electron microscopy and SDS-

PAGE, respectively. Endotoxins measurement were 2.8, 2.9 and 3 EU/ml for OMVs from 

the lab, the antibiotic-susceptible and the resistant strains, respectively. Conclusion: The 

results of the current study demonstrated that OMVs of the resistant PA strain may produce 

vesicles with a particular composition. This characterization profile provides a basis for 

future studies to elucidate immune responses to OMVs from PA and developing vaccines 

against Pseudomonal infections as a common nosocomial infection with extremely high 

resistance to antibiotics. 
   

INTRODUCTION 
Pseudomonas aeruginosa (PA) is a common Gram-

negative opportunistic pathogen that causes nosocomial 

pneumonia, acute or chronic infections in the lung, blood 

stream, urinary tract, and surgical or burn wounds [1]. Patients 

with cystic fibrosis and hospitalized patients are associated with 

fatal PA infections due to their weakened immune system [2]. 

PA releases outer membrane vesicles (OMVs) like other Gram-

negative bacteria [3], which are bilayered spherical proteolipids 

with an average diameter of 20–200 nm. OMVs contain 

lipopolysaccharide (LPS), glycerophospholipids, proteins of the 

outer membrane, DNA and RNA [4]. Moreover, phospholipase 

C, alkaline phosphatase, proelastase, hemolysin [5], murein 

hydrolases [6], antibiotic resistance [7] and quorum sensing 

molecules have been reported as PA OMVs contents. OMVs 

play a significant role in bacterial pathogenesis [8]; therefore, 

previous studies have paid attention to assay the possibility to 

use them for the vaccine development. According to the results 

of these studies, vesicles of Gram-negative bacteria such as 

Neisseria meningitides [9], Acinetobacter baumannii [10], 

Helicobacter pylori [11] and Klebsiella pneumonia [12] are 

capable of producing immunity against the infections in animal 

models. Based on previous studies which have shown the 

activation of alveolar epithelial cells and induction of 

interleukin 8 (IL-8) release in vitro by PA OMVs [2, 13] as well 

as the results of our previous study with attention to strong 

induction of toll like receptor (TLR) pathways (especially 

intracellular TLRs and inflammatory cytokines [14]), it appears 

that PA OMVs are capable of inducing an appropriate immune 
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response in epithelial cells. It should also be noted that 

developing new and alternative cure strategies are desperately 

needed due to the presence of multiple-drug resistant and even 

pan-drug resistant PA isolates which make it increasingly 

difficult to treat the related infections [15]. Thus, in the current 

study, physicochemical properties of PA OMVs of different 

strains were compared. This could be an important step forward 

in their application as new biotechnological tools in areas such 

as vaccine manufacturing, adjuvants and drug delivery. 

 

MATERIALS and METHODS 
Bacterial Strains: A laboratory PA strain (ATCC 17933) 

was obtained from the Pasture Institute of Iran. Moreover, two 

clinical isolates termed as antibiotic-susceptible and antibiotic 

(i.e. Amikacin, Gentamicin, Ciprofloxacin, Ceftazidime, 

Cefepime, Imipenem, Ceftriaxone, and Cotrimoxazole)-

resistant, were obtained from eye and sputum samples, 

respectively (Loghman Hospital, Tehran, Iran). 

OMV Isolation: OMVs released by the PA strains were 

isolated by the protocols described previously [2]. Briefly, 500 

ml of the strains were grown (at 37°C) overnight. Isolation of 

OMVs was performed by Tris-HCl, EDTA and 100 g/L 

deoxycholate and consecutive centrifugation at 20,000 x g for 

30 min. Finally, OMVs were pelleted using ultracentrifugation 

at 125,000 x g for 2 h. The pellets were suspended in sucrose 

(% 3) and stored at -80˚C before use. 

OMV Physicochemical Analyses: The amounts of the 

purified proteins were measured using spectrophotometry using 

a NanoDrop instrument (Thermo scientific, USA). The protein 

contents of the OMVs were assessed using 12% SDS-PAGE 

and staining was done by Coomassie blue [2]. 

Scanning Electron Microscopy (SEM): The integrity, 

morphology and size of the negatively stained OMVs were 

performed using scanning electron microscopy (SEM). In brief, 

we placed the vesicles on carbon-coated nickel grids and fixed 

them using glutaraldehyde (2% in PBS). Then, potassium 

phosphotangstate was used for negative staining and visualized 

using a field emission scanning electron microscope (SEM 

S4160, Hitachi, Japan) at 30 Kv. 

Endotoxin Analysis by Limulus Amebocyte Lysate 

(LAL) Method: The Lipopolysaccharides (LPS) contents of 

the OMV preparations were assayed according to a Limulus 

assay using pierce LAL chromogenic endotoxin quantitation kit 

(Thermo Scientific, USA). The microplate reader (BioTek, 

USA) was used for reading the plates. 

 

RESULTS  
Purification and Physicochemical Comparison of 

OMVs Derived from Different PA Strains: The integrity of 

the vesicles was confirmed by images obtained after the SEM 

examination. Although they all had almost closed vesicular 

forms, the OMVs of the lab and the antibiotic-susceptible 

strains were similar in size and density (Figs. 1B, C) while they 

had different protein compositions (Fig. 1A). Specifically, 

OMV from both the antibiotic-susceptible and the antibiotic-

resistant strains had similar protein compositions with only 

delicate differences in their band intensities (Fig. 1A). The 

molecular weights of the PA-derived OMVs ranged along the 

11-160 kDa marker and bands corresponding to ~57 kDa could 

be detected in OMVs of the antibiotic-susceptible and the 

antibiotic-resistant samples but not in the laboratory strain 

sample (Fig. 1A, blue arrow). The resistant strain had dense 

OMVs with the smallest size among the tested OMVs (Fig. 1D) 

while it had approximately sharper bands with a distinct pattern 

on SDS–PAGE, compared to the other strains (Fig. 1A). The 

measured concentrations of the OMVs proteins indicated 0.731, 

2.823 and 3.191 mg/ml of protein content for the laboratory, the 

antibiotic-susceptible and the antibiotic-resistant strains, 

respectively. Moreover, 2.8, 2.9 and 3 EU/ml were obtained as 

the LPS amounts in OMVs from the laboratory, the antibiotic-

susceptible and the antibiotic-resistant strains, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (A) The SDS-PAGE of the 

purified OMVs from three different PA 

strains; A ~57 kDa band could be 

detected in vesicles from the antibiotic-

susceptible (sensitive) and the 

antibiotic-resistant strains. (B, C, and 

D) SEM images of the purified OMVs 

of the laboratory, the antibiotic-

susceptible and the antibiotic-resistant 

strains, respectively. 
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DISCUSSION 
In our previous study, we showed that intestinal epithelial 

cells exposed to OMVs of different PA strains would lead to 

strain-specific induction in the expression profiles of TLRs, 

signaling pathway-related genes and different secretions levels 

of pro-inflammatory cytokines and chemokines [14]. Our data 

demonstrated that the vesicle sizes, their contents and their 

amount are strain-dependent. Here, to isolate the OMVs of the 

tested PA, we performed the ultracentrifugation method, which 

is the most common method for OMV isolation. We also 

applied SEM for the confirmation of the spatial shape and sizes 

of the PA-derived vesicles which indicated that the sizes were 

within ~ 30-250 nm range. Further, the PA resistant strain 

showed dense OMVs with variable sizes which were more 

spherical and smaller than the vesicles from the other tested 

strains (Figs. 1B, C, D). Strain-dependent differences in the 

vesicle yield, morphology, size, and protein compositions were 

expected, as reported by previous studies [16, 17, 18], which 

may be due to the composition of the vesicles [19]. In addition, 

our data were consistent with previous results, demonstrating 

that pathogenic bacteria produce more vesicles with smaller 

sizes than their non-pathogenic counterparts [20, 21] . The 

molecular weights of the tested OMVs ranged from 11 to 160 

kDa and were highly consistent with previous studies [22, 23]. 

Bands corresponding to the molecular weight of ~57 kDa were 

visible in the susceptible and the resistant vesicles which could 

be the protein identified as an extracellular aminopeptidase 

determined PaAP [16, 24]; although its proper identification 

require further studies. PaAP has been specified recently as a 

zinc-dependent leucine aminopeptidase that is partly controlled 

by the las quorum-sensing system [2]. The average size of the 

purified vesicles was consistent with vesicle sizes reported for 

PA and other bacteria [25]. We observed that vesicles from the 

resistant strain were smaller and more spherical with more 

protein and LPS content. As stated by Bauman and Kuehn, the 

protein and LPS ratios can affect the size and shape of the 

OMVs [2]. 

In conclusion, our results demonstrated that the 

conformation and components of PA-derived OMVs were 

strain dependent. However, the resistant strain produced 

vesicles with a particular composition. Identification of active 

components of PA secreting OMVs and its potential therapeutic 

use remain to be investigated. Infections caused by PA are 

increasingly difficult to be cured due to the emergence of 

multiple-drug resistant isolates [26]. Moreover, further 

researches are necessary to elucidate the safety, efficacy, 

practicality and mechanisms of action of PA OMVs in 

therapeutic and preventive clinical practices, especially as 

vaccine delivery vehicles. 
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