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Introduction: Pseudomonas aeruginosa (PA) is an opportunistic mucosal human pathogen
responsible for a wide range of acute and chronic infections. PA releases outer membrane
vesicles (OMVs) in all situations and environments. OMVs are bilayered proteolipids
ranging in diameter from 50 to 250 nm. Recent studies have demonstrated that OMVs are
related to PA pathogenesis. According to strain-dependent components of OMV, in this
study, we aimed at identifying significant physicochemical differences among OMVs from
lab strain ATCC 17933, an antibiotic-susceptible and an antibiotic-resistant PA clinical
strains. Methods: OMVs of the three strains were purified using differential centrifugation
with deoxycholate and EDTA. Chemical analyses were assessed using nano-drop, SDS-
PAGE and the limulus amebocyte lysate (LAL) test. Moreover, electron microscopy was
performed to verify the stability and totality of the extracted OMVSs. Results: The
nanodrop method and the LAL test showed that total protein and endotoxin concentrations
were significantly different among all the 3 mentioned strains. In addition, the quality
control of OMVs illustrated that the lab and the antibiotic-susceptible strains were
approximately similar in terms of the vesicle yield and size; however they differed in
protein contents. Moreover, OMVs generated from the resistant strain had a higher density,
smaller size and sharper protein bands as observed by electron microscopy and SDS-
PAGE, respectively. Endotoxins measurement were 2.8, 2.9 and 3 EU/mI for OMVs from
the lab, the antibiotic-susceptible and the resistant strains, respectively. Conclusion: The
results of the current study demonstrated that OMV:s of the resistant PA strain may produce
vesicles with a particular composition. This characterization profile provides a basis for
future studies to elucidate immune responses to OMVs from PA and developing vaccines
against Pseudomonal infections as a common nosocomial infection with extremely high
resistance to antibiotics.

INTRODUCTION

Pseudomonas aeruginosa (PA) is a common Gram-
negative opportunistic pathogen that causes nosocomial
pneumonia, acute or chronic infections in the lung, blood
stream, urinary tract, and surgical or burn wounds [1]. Patients
with cystic fibrosis and hospitalized patients are associated with
fatal PA infections due to their weakened immune system [2].
PA releases outer membrane vesicles (OMVs) like other Gram-
negative bacteria [3], which are bilayered spherical proteolipids
with an average diameter of 20-200 nm. OMVs contain
lipopolysaccharide (LPS), glycerophospholipids, proteins of the
outer membrane, DNA and RNA [4]. Moreover, phospholipase
C, alkaline phosphatase, proelastase, hemolysin [5], murein
hydrolases [6], antibiotic resistance [7] and quorum sensing
molecules have been reported as PA OMVs contents. OMVs
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play a significant role in bacterial pathogenesis [8]; therefore,
previous studies have paid attention to assay the possibility to
use them for the vaccine development. According to the results
of these studies, vesicles of Gram-negative bacteria such as
Neisseria meningitides [9], Acinetobacter baumannii [10],
Helicobacter pylori [11] and Klebsiella pneumonia [12] are
capable of producing immunity against the infections in animal
models. Based on previous studies which have shown the
activation of alveolar epithelial cells and induction of
interleukin 8 (IL-8) release in vitro by PA OMVs [2, 13] as well
as the results of our previous study with attention to strong
induction of toll like receptor (TLR) pathways (especially
intracellular TLRs and inflammatory cytokines [14]), it appears
that PA OMVs are capable of inducing an appropriate immune
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response in epithelial cells. It should also be noted that
developing new and alternative cure strategies are desperately
needed due to the presence of multiple-drug resistant and even
pan-drug resistant PA isolates which make it increasingly
difficult to treat the related infections [15]. Thus, in the current
study, physicochemical properties of PA OMVs of different
strains were compared. This could be an important step forward
in their application as new biotechnological tools in areas such
as vaccine manufacturing, adjuvants and drug delivery.

MATERIALS and METHODS

Bacterial Strains: A laboratory PA strain (ATCC 17933)
was obtained from the Pasture Institute of Iran. Moreover, two
clinical isolates termed as antibiotic-susceptible and antibiotic
(i.e. Amikacin, Gentamicin, Ciprofloxacin, Ceftazidime,
Cefepime, Imipenem, Ceftriaxone, and Cotrimoxazole)-
resistant, were obtained from eye and sputum samples,
respectively (Loghman Hospital, Tehran, Iran).

OMYV lsolation: OMVs released by the PA strains were
isolated by the protocols described previously [2]. Briefly, 500
ml of the strains were grown (at 37°C) overnight. Isolation of
OMVs was performed by Tris-HCI, EDTA and 100 g/L
deoxycholate and consecutive centrifugation at 20,000 x g for
30 min. Finally, OMVs were pelleted using ultracentrifugation
at 125,000 x g for 2 h. The pellets were suspended in sucrose
(% 3) and stored at -80°C before use.

OMV Physicochemical Analyses: The amounts of the
purified proteins were measured using spectrophotometry using
a NanoDrop instrument (Thermo scientific, USA). The protein
contents of the OMVs were assessed using 12% SDS-PAGE
and staining was done by Coomassie blue [2].

Scanning Electron Microscopy (SEM): The integrity,
morphology and size of the negatively stained OMVs were
performed using scanning electron microscopy (SEM). In brief,
we placed the vesicles on carbon-coated nickel grids and fixed
them using glutaraldehyde (2% in PBS). Then, potassium
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phosphotangstate was used for negative staining and visualized
using a field emission scanning electron microscope (SEM
S4160, Hitachi, Japan) at 30 Kv.

Endotoxin Analysis by Limulus Amebocyte Lysate
(LAL) Method: The Lipopolysaccharides (LPS) contents of
the OMV preparations were assayed according to a Limulus
assay using pierce LAL chromogenic endotoxin quantitation kit
(Thermo Scientific, USA). The microplate reader (BioTek,
USA) was used for reading the plates.

RESULTS

Purification and Physicochemical Comparison of
OMVs Derived from Different PA Strains: The integrity of
the vesicles was confirmed by images obtained after the SEM
examination. Although they all had almost closed vesicular
forms, the OMVs of the lab and the antibiotic-susceptible
strains were similar in size and density (Figs. 1B, C) while they
had different protein compositions (Fig. 1A). Specifically,
OMV from both the antibiotic-susceptible and the antibiotic-
resistant strains had similar protein compositions with only
delicate differences in their band intensities (Fig. 1A). The
molecular weights of the PA-derived OMVs ranged along the
11-160 kDa marker and bands corresponding to ~57 kDa could
be detected in OMVs of the antibiotic-susceptible and the
antibiotic-resistant samples but not in the laboratory strain
sample (Fig. 1A, blue arrow). The resistant strain had dense
OMVs with the smallest size among the tested OMVs (Fig. 1D)
while it had approximately sharper bands with a distinct pattern
on SDS-PAGE, compared to the other strains (Fig. 1A). The
measured concentrations of the OMVs proteins indicated 0.731,
2.823 and 3.191 mg/ml of protein content for the laboratory, the
antibiotic-susceptible and the antibiotic-resistant strains,
respectively. Moreover, 2.8, 2.9 and 3 EU/ml were obtained as
the LPS amounts in OMVs from the laboratory, the antibiotic-
susceptible and the antibiotic-resistant strains, respectively.

Fig. 1. (A) The SDS-PAGE of the
purified OMVs from three different PA
strains; A ~57 kDa band could be
detected in vesicles from the antibiotic-
susceptible  (sensitive) and  the
antibiotic-resistant strains. (B, C, and
D) SEM images of the purified OMVs
of the laboratory, the antibiotic-
susceptible and the antibiotic-resistant
strains, respectively.
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DISCUSSION

In our previous study, we showed that intestinal epithelial
cells exposed to OMVs of different PA strains would lead to
strain-specific induction in the expression profiles of TLRs,
signaling pathway-related genes and different secretions levels
of pro-inflammatory cytokines and chemokines [14]. Our data
demonstrated that the vesicle sizes, their contents and their
amount are strain-dependent. Here, to isolate the OMVs of the
tested PA, we performed the ultracentrifugation method, which
is the most common method for OMV isolation. We also
applied SEM for the confirmation of the spatial shape and sizes
of the PA-derived vesicles which indicated that the sizes were
within ~ 30-250 nm range. Further, the PA resistant strain
showed dense OMVs with variable sizes which were more
spherical and smaller than the vesicles from the other tested
strains (Figs. 1B, C, D). Strain-dependent differences in the
vesicle yield, morphology, size, and protein compositions were
expected, as reported by previous studies [16, 17, 18], which
may be due to the composition of the vesicles [19]. In addition,
our data were consistent with previous results, demonstrating
that pathogenic bacteria produce more vesicles with smaller
sizes than their non-pathogenic counterparts [20, 21] . The
molecular weights of the tested OMVs ranged from 11 to 160
kDa and were highly consistent with previous studies [22, 23].
Bands corresponding to the molecular weight of ~57 kDa were
visible in the susceptible and the resistant vesicles which could
be the protein identified as an extracellular aminopeptidase
determined PaAP [16, 24]; although its proper identification
require further studies. PaAP has been specified recently as a
zinc-dependent leucine aminopeptidase that is partly controlled
by the las quorum-sensing system [2]. The average size of the
purified vesicles was consistent with vesicle sizes reported for
PA and other bacteria [25]. We observed that vesicles from the
resistant strain were smaller and more spherical with more
protein and LPS content. As stated by Bauman and Kuehn, the
protein and LPS ratios can affect the size and shape of the
OMVs [2].

In conclusion, our results demonstrated that the
conformation and components of PA-derived OMVs were
strain dependent. However, the resistant strain produced
vesicles with a particular composition. ldentification of active
components of PA secreting OMVs and its potential therapeutic
use remain to be investigated. Infections caused by PA are
increasingly difficult to be cured due to the emergence of
multiple-drug resistant isolates [26]. Moreover, further
researches are necessary to elucidate the safety, efficacy,
practicality and mechanisms of action of PA OMVs in
therapeutic and preventive clinical practices, especially as
vaccine delivery vehicles.
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