Original Article

Cloning and expression of hepatitis E virus ORF2 as an immunogen protein in baculovirus expression system

Sadeghi SA¹, Shahanagi M², Aghasadeghi MR³, Motevalli F², Amiran MR², Mohammadi Pargoo S², Hamidi-Fard M²³

¹Department of Research and Development of Hepatitis A vaccine, Pasteur Institute of Iran, Alborz, Iran.
²Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.

ABSTRACT

Introduction: Hepatitis E virus (HEV) is a non-enveloped, single-stranded positive-sense RNA virus. It is one of the most important causes of liver failures and the mortality rate arising from HEV is more common in pregnant women. HEV is an enterically-transmitted virus and its outbreak is more common in the developing and poor-hygiene countries while vaccination against it can prevent its prevalence. The ORF2 is an immunogenic capsid protein of HEV with 660 amino acids that is being used in vaccine designs against HEV infection. ORF2 has been studied in a vast range of vectors and hosts, such as pRSET-C, pMAL and pSG vectors, as well as Escherichia coli BL21 and vaccinia virus hosts. A DNA vaccine expressing ORF2 has also been studied which has induced specific humoral and cellular immune responses in mice. This study was aimed to clone and express ORF2 as an immunogen protein in a eukaryotic host system. Methods: orf2 gene corresponding to 660 amino acids of ORF2 protein was subcloned from a pET21a vector into pFastBac. The protein expression was achieved by transforming S9 insect cells with a pFastBac-orf2 construct. The over-expressed protein with ~72 kDa MW was assessed by SDS-PAGE. Results: The cloning was confirmed by PCR and restriction digestions. The expression of ORF2 with expected MW in S9 cells was confirmed by SDS-PAGE. Conclusion: ORF2 protein of HEV was successfully expressed in a baculovirus-based eukaryotic expression system as the first step for further studies on HEV vaccine designs, based on ORF2 protein.

KEYWORDS: Baculovirus, Hepatitis E virus, ORF2, Vaccine.

INTRODUCTION

HEV is a non-enveloped virus which belongs to Hepeviridae family and Orthohepeviridae genus. It contains a polyadenylated, single-stranded, positive-sense RNA with 7.2 kbp length which encodes three overlapping Open Reading Frames (ORFs). HEV is responsible for a water-borne infection which causes liver inflammation [1]. Hepatitis that is caused by HEV can emerge either as an infection without signs or as a fulminant and fatal infection [2]. Capsid protein of HEV binds to the cell receptors and trigger pathogenesis [3]. HEV is the most common cause of acute hepatitis in adult persons in Asia and is the second cause of acute hepatitis in the Middle East after Hepatitis B Virus [4]. Diagnosis of HEV is performed by detection of Alanine Amino Transferase (ALT) as well as anti-HEV IgM and IgG in a patient’s serum [5]. Real-time PCR is a sensitive assay for detection of HEV RNA in stool and blood samples [6]. HEV single-stranded RNA encompasses orf1, orf2 and orf3. The biggest ORF in HEV genome is orf1 which encodes non-structural proteins while orf2 is responsible for encoding a structural protein with 660 amino acids in length and orf3 encodes an ion channel [7, 8]. ORF2 is an immunogen protein which has been a target for vaccine design approaches [9]. Acute hepatitis E in people with normal immune system is a self-limiting infection and usually doesn’t need anti-viral therapy [10]. In patients with suppressed immune system, antiviral agents (such as Ribavirin) are needed. In China, p239 HEV vaccine (Hecolin®) based on ORF2 has been approved and is used to make protection in infection-prone persons, older than 16 while it has no approval license from the US Food and Drug Administration (FDA) and is not prescribed in countries other than China [11]. ORF2 expression was studied in a vast range of vectors and hosts, such as pRSET-C, pMAL and pSG as vectors and Escherichia coli BL21 and vaccinia virus as hosts [12-15]. A recombinant Baculovirus has been designed to express orf2 which has been transduced to S10-3 human hepatoma cells and approximately 50% of the cells produced ORF2 protein with a MW of ~72kDa [16]. Baculovirus is a double-stranded DNA virus that infects insect cells and is also used for the protein expression. Because of its post-translational modification feature, it is an appropriate expression system for eukaryotic and viral proteins expressions [17]. SF9 is a cell line derived from Spodoptera frugiperda’s larva cell and is common as the host for Baculovirus in researches [18]. BHK-21 cells are also used as the host for Semliki Forest Virus (SFV) replicon to produce ORF2 [19]. Insoluble ORF2 has been expressed on the cell surface of constructed recombinant Lactococcus lactis (L.
lactis) strain NZ3900 that can be used as an oral vaccine for protection against HEV [20]. We used pET26b expression vector containing PelB sequence in our previous research to express ORF2 with a His-tag at the c-terminal [15]. PelB is responsible for secretion of the protein to the periplasmic space [21]. In this study, we used Baulovirus expression system in SF9 cell line to express ORF2 protein to be used in future HEV vaccine studies.

MATERIALS and METHODS

Construction of vector containing orf2

Nucleotide sequence of HEV orf2 was retrieved from GenBank (accession number AF444002.1). The orf2 sequence was cloned into pET21a vector (containing a c-terminal His-tag) by Gene Transfer Pioneers Company. In order to confirm orf2 cloning into pET21a vector, the construct was assessed by EcoRI and NotI restriction enzymes digestion. To sub-clone the gene of interest into pFastBac, both pFastBac vector and pET21a vector containing orf2 were double-digested by EcoRI and NotI restriction enzymes. The digested orf2 insert was ligated into the double-digested pFastBac expression vector (Fig. 1). PCR was conducted by forward and reverse primers (Forward: 5′-ATGATATCCATATGATCGCGCTGACCCTG and Reverse: 5′-TGTTAGCAGCCGGATCTCAGTGGTGG) to confirm the sub-cloning process.

In order to select colonies containing pFastBac-orf2, plasmid extraction was performed (Yekta Tajhiz Azama plasmid extraction kit, Iran). The extracted plasmids were then digested by EcoRI restriction enzyme and run on agarose gel. A colon containing pFastBac-orf2 was selected and cultured.

SF9 cell line preparation

SF9 cell line was obtained from National cell Bank of Iran and cultured in Hink’s TNM-FH insect Medium (Sigma-Aldrich chemie GmbH, Germany).

Electroporation

One microgram of the extracted pFastBac-orf2 vector was added to the washed SF9 pellet (~2.5x10^6 cells) and applied for electroporation procedure. Electroporation was performed by 750 V/cm and pulses with intervals of 2.8 ms.

Evaluation of expressed protein by SDS-PAGE

In order to evaluate the protein expression, SDS-PAGE was conducted on 12.5% resolving gel.

RESULTS

Gene cloning confirmation

The precise presence of orf2 sequence in pET21a vector was confirmed by double-digestion using NotI and EcoRI restriction endonucleases. These enzymes were applied to pFastBac vector (4775 bp length) as well (data not shown). After, orf2 was ligated with pFastBac. PCR was performed to select the right colon that contains pFastBac-orf2 vector. The PCR product was loaded on 1% agarose gel and a band with 1973 bp length demonstrated orf2 sequence (data not shown). Following that, plasmid was extracted and then digested with EcoRI and electrophoresed on 1% agarose gel in which the band with the length of ~6700 bp confirmed pFastBac containing orf2 (Fig. 2).

Heat shock transformation of pFastBac-orf2

The cloning process was followed by transforming pFastBac-orf2 into competent E. coli DH5α by adding 100 µl of the vector to 200 µl of competent E.coli DH5α and chilling on ice for 30 min. The microtube containing the vector and the bacteria was incubated at 42°C for 90 seconds and immediately transferred on ice for 5 min. LB media (1 ml) containing antibiotic (100 µg/ml ampicillin) was added to the prepared bacteria and incubated at 37°C for 60 min. The media containing transformed bacteria was centrifuged and the pellet was cultured on LB agar containing the antibiotic.

Colony selection

The cloning process was followed by transforming pFastBac-orf2 into competent E. coli DH5α by adding 100 µl of the vector to 200 µl of competent E.coli DH5α and chilling on ice for 30 min. The microtube containing the vector and the bacteria was incubated at 42°C for 90 seconds and immediately transferred on ice for 5 min. LB media (1 ml) containing antibiotic (100 µg/ml ampicillin) was added to the prepared bacteria and incubated at 37°C for 60 min. The media containing transformed bacteria was centrifuged and the pellet was cultured on LB agar containing the antibiotic.

Electroporation

One microgram of the extracted pFastBac-orf2 vector was added to the washed SF9 pellet (~2.5x10^6 cells) and applied for electroporation procedure. Electroporation was performed by 750 V/cm and pulses with intervals of 2.8 ms.

Evaluation of expressed protein by SDS-PAGE

In order to evaluate the protein expression, SDS-PAGE was conducted on 12.5% resolving gel.

RESULTS

Gene cloning confirmation

The precise presence of orf2 sequence in pET21a vector was confirmed by double-digestion using NotI and EcoRI restriction endonucleases. These enzymes were applied to pFastBac vector (4775 bp length) as well (data not shown). After, orf2 was ligated with pFastBac. PCR was performed to select the right colon that contains pFastBac-orf2 vector. The PCR product was loaded on 1% agarose gel and a band with 1973 bp length demonstrated orf2 sequence (data not shown). Following that, plasmid was extracted and then digested with EcoRI and electrophoresed on 1% agarose gel in which the band with the length of ~6700 bp confirmed pFastBac containing orf2 (Fig. 2).

Heat shock transformation of pFastBac-orf2

The cloning process was followed by transforming pFastBac-orf2 into competent E. coli DH5α by adding 100 µl of the vector to 200 µl of competent E.coli DH5α and chilling on ice for 30 min. The microtube containing the vector and the bacteria was incubated at 42°C for 90 seconds and immediately transferred on ice for 5 min. LB media (1 ml) containing antibiotic (100 µg/ml ampicillin) was added to the prepared bacteria and incubated at 37°C for 60 min. The media containing transformed bacteria was centrifuged and the pellet was cultured on LB agar containing the antibiotic.

Colony selection

The cloning process was followed by transforming pFastBac-orf2 into competent E. coli DH5α by adding 100 µl of the vector to 200 µl of competent E.coli DH5α and chilling on ice for 30 min. The microtube containing the vector and the bacteria was incubated at 42°C for 90 seconds and immediately transferred on ice for 5 min. LB media (1 ml) containing antibiotic (100 µg/ml ampicillin) was added to the prepared bacteria and incubated at 37°C for 60 min. The media containing transformed bacteria was centrifuged and the pellet was cultured on LB agar containing the antibiotic.

Electroporation

One microgram of the extracted pFastBac-orf2 vector was added to the washed SF9 pellet (~2.5x10^6 cells) and applied for electroporation procedure. Electroporation was performed by 750 V/cm and pulses with intervals of 2.8 ms.

Evaluation of expressed protein by SDS-PAGE

In order to evaluate the protein expression, SDS-PAGE was conducted on 12.5% resolving gel.

RESULTS

Gene cloning confirmation

The precise presence of orf2 sequence in pET21a vector was confirmed by double-digestion using NotI and EcoRI restriction endonucleases. These enzymes were applied to pFastBac vector (4775 bp length) as well (data not shown). After, orf2 was ligated with pFastBac. PCR was performed to select the right colon that contains pFastBac-orf2 vector. The PCR product was loaded on 1% agarose gel and a band with 1973 bp length demonstrated orf2 sequence (data not shown). Following that, plasmid was extracted and then digested with EcoRI and electrophoresed on 1% agarose gel in which the band with the length of ~6700 bp confirmed pFastBac containing orf2 (Fig. 2).

Heat shock transformation of pFastBac-orf2

The cloning process was followed by transforming pFastBac-orf2 into competent E. coli DH5α by adding 100 µl of the vector to 200 µl of competent E.coli DH5α and chilling on ice for 30 min. The microtube containing the vector and the bacteria was incubated at 42°C for 90 seconds and immediately transferred on ice for 5 min. LB media (1 ml) containing antibiotic (100 µg/ml ampicillin) was added to the prepared bacteria and incubated at 37°C for 60 min. The media containing transformed bacteria was centrifuged and the pellet was cultured on LB agar containing the antibiotic.
HEV is one of the most prevalent causes of sporadic hepatitis across the world. It is an acute self-limiting viral hepatitis with fecal-oral transmit in route which its genome was characterized in 1991 [1, 22]. People in the developing countries and poor regions of the world as well as patients with organ transplantations or hepatic failures background are at high risk for viral hepatitis caused by HEV[1]. Among the 3 ORFs of HEV, ORF2 is a capsid protein that is essential for binding of HEV to the host cells and leads to the immune system stimulation [23]. The antibody against HEV capsid protein leads to viral neutralisation in vitro and makes protection in primates against HEV. Hence, ORF2 has been considered as a vaccine candidate for viral hepatitis caused by HEV[24]. Recombinant ORF2 proteins have been expressed in a wide range of hosts such as vaccinia virus[23], tobacco [25] and Huh-7 cells [26].

In order to confirm and assess ORF2 expression, the transfected S9 cells were incubated at 27°C overnight and then were heated in boiling water for 5 min and applied to SDS-PAGE. An overexpressed band with MW of ~72kDa, confirmed the accurate expression of ORF2 protein (Fig. 4).

HEV IgG kits and a reexpress domestic ORF2 protein of HEV genotype1 which has been expressed in E.coli BL21in the form of inclusion bodies [27]. Although bacterial expression systems are commonly used in researches due to their relatively simpler gene manipulation, low cost protein expression procedures and high quantity of the expressed proteins, they lack post-translational modification on the expressed protein. Therefore, attempt were made to express ORF2 by eukaryotic systems [21]. For instance, transgenic tomato has been designed to express ORF2 in its fruits and leaves. Such expressed ORF2 had the potential to stimulate the immune system while it could be used as a promising oral vaccine [28].

In the present study, we expressed ORF2 in a eukaryotic system instead of E.coli. We used eukaryotic S9 cells and baculovirus expression system to express domestic ORF2 protein of HEV genotype1 in which ORF2 was expressed, appropriately. The pathological indications in S9 cells indicated a high titer of infectious virus and high yield of the electroporation. In comparison with the expression in prokaryotic systems, the expression of ORF2 in baculovirus-based expression system has the advantage of post-translational modification which is closer to its native structure and with a reasonable efficiency that can potentially be developed as an immunogen for future HEV vaccine researches.

ACKNOWLEDGEMENT

The authors would like to acknowledge Department of Hepatitis and AIDS Pasteur Institute of Iran.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

2. Betts RF, Penn RL, Chapman SW. Reese and Betts'a practical approach to infectious diseases. Lippincott Williams & Wilkins; 2003.